Spaces:
Running
Running
A newer version of the Gradio SDK is available:
5.45.0
Voxtral ASR Fine-tuning Architecture
graph TB
%% User Interface Layer
subgraph "User Interface"
UI[Gradio Web Interface<br/>interface.py]
REC[Audio Recording<br/>Microphone Input]
UP[File Upload<br/>WAV/FLAC files]
end
%% Data Processing Layer
subgraph "Data Processing"
DP[Data Processing<br/>Audio resampling<br/>JSONL creation]
DS[Dataset Management<br/>NVIDIA Granary<br/>Local datasets]
end
%% Training Layer
subgraph "Training Pipeline"
TF[Full Fine-tuning<br/>scripts/train.py]
TL[LoRA Fine-tuning<br/>scripts/train_lora.py]
TI[Trackio Integration<br/>Experiment Tracking]
end
%% Model Management Layer
subgraph "Model Management"
MM[Model Management<br/>Hugging Face Hub<br/>Local storage]
MC[Model Card Generation<br/>scripts/generate_model_card.py]
end
%% Deployment Layer
subgraph "Deployment & Demo"
DEP[Demo Space Deployment<br/>scripts/deploy_demo_space.py]
HF[HF Spaces<br/>Interactive Demo]
end
%% External Services
subgraph "External Services"
HFH[Hugging Face Hub<br/>Models & Datasets]
GRAN[NVIDIA Granary<br/>Multilingual ASR Dataset]
TRACK[Trackio Spaces<br/>Experiment Tracking]
end
%% Data Flow
UI --> DP
REC --> DP
UP --> DP
DP --> DS
DS --> TF
DS --> TL
TF --> TI
TL --> TI
TF --> MM
TL --> MM
MM --> MC
MM --> DEP
DEP --> HF
DS -.-> HFH
MM -.-> HFH
TI -.-> TRACK
DS -.-> GRAN
%% Styling
classDef interface fill:#e1f5fe,stroke:#01579b,stroke-width:2px
classDef processing fill:#f3e5f5,stroke:#4a148c,stroke-width:2px
classDef training fill:#e8f5e8,stroke:#1b5e20,stroke-width:2px
classDef management fill:#fff3e0,stroke:#e65100,stroke-width:2px
classDef deployment fill:#fce4ec,stroke:#880e4f,stroke-width:2px
classDef external fill:#f5f5f5,stroke:#424242,stroke-width:2px
class UI,REC,UP interface
class DP,DS processing
class TF,TL,TI training
class MM,MC management
class DEP,HF deployment
class HFH,GRAN,TRACK external
Architecture Overview
This diagram shows the high-level architecture of the Voxtral ASR Fine-tuning application. The system is organized into several layers:
1. User Interface Layer
- Gradio Web Interface: Main user-facing application built with Gradio
- Audio Recording: Microphone input for recording speech samples
- File Upload: Support for uploading existing WAV/FLAC audio files
2. Data Processing Layer
- Data Processing: Audio resampling to 16kHz, JSONL dataset creation
- Dataset Management: Integration with NVIDIA Granary dataset and local dataset handling
3. Training Layer
- Full Fine-tuning: Complete model fine-tuning using
scripts/train.py
- LoRA Fine-tuning: Parameter-efficient fine-tuning using
scripts/train_lora.py
- Trackio Integration: Experiment tracking and logging
4. Model Management Layer
- Model Management: Local storage and Hugging Face Hub integration
- Model Card Generation: Automated model card creation
5. Deployment Layer
- Demo Space Deployment: Automated deployment to Hugging Face Spaces
- Interactive Demo: Live demo interface for testing fine-tuned models
6. External Services
- Hugging Face Hub: Model and dataset storage and sharing
- NVIDIA Granary: High-quality multilingual ASR dataset
- Trackio Spaces: Experiment tracking and visualization
Key Workflows
- Dataset Creation: Users can record audio or upload files → processed into JSONL format
- Model Training: Datasets fed into training scripts with experiment tracking
- Model Publishing: Trained models pushed to HF Hub with generated model cards
- Demo Deployment: Automated deployment of interactive demos to HF Spaces
See also: