Create change_the_model

#9
by Kiruthick18 - opened
Files changed (1) hide show
  1. change_the_model +137 -0
change_the_model ADDED
@@ -0,0 +1,137 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # πŸš€ Speed Optimized Summarization with DistilBART
2
+
3
+ The BART model is quite large (~1.6GB) and slow. I optimized it with a much faster, lighter model and better performance settings.
4
+
5
+ ---
6
+
7
+ ## πŸš€ Major Speed Optimizations Applied
8
+
9
+ ### 1. Faster Model
10
+ - **Switched from** `facebook/bart-large-cnn` (**~1.6GB**)
11
+ - **To** `sshleifer/distilbart-cnn-12-6` (**~400MB**)
12
+ - πŸ”₯ **6x smaller model size** = Much faster loading and inference
13
+
14
+ ### 2. Processing Optimizations
15
+ - **Smaller chunks:** 512 words vs 900 (faster processing)
16
+ - **Limited chunks:** Max 5 chunks processed (prevents hanging on huge docs)
17
+ - **Faster tokenization:** Word count instead of full tokenization for chunking
18
+ - **Reduced beam search:** 2 beams instead of 4 (2x faster)
19
+
20
+ ### 3. Smart Summarization
21
+ - **Shorter summaries:** Reduced max lengths across all modes
22
+ - **Skip final summary:** For documents with ≀2 chunks (saves time)
23
+ - **Early stopping:** Enabled for faster convergence
24
+ - **Progress tracking:** Shows which chunk is being processed
25
+
26
+ ### 4. Memory & Performance
27
+ - **Float16 precision:** Used when GPU is available (faster inference)
28
+ - **Optimized pipeline:** Better model loading with fallback
29
+ - **`optimum` library added:** For additional speed improvements
30
+
31
+ ---
32
+
33
+ ## ⚑ Expected Speed Improvements
34
+
35
+ | Task | Before | After |
36
+ |-------------------|----------------------|------------------------------|
37
+ | Model loading | ~30+ seconds | ~10 seconds |
38
+ | PDF processing | Minutes | ~5–15 seconds |
39
+ | Memory usage | ~1.6GB | ~400MB |
40
+ | Overall speed | Slow | πŸš€ 5–10x faster |
41
+
42
+ ---
43
+
44
+ ## 🧬 What is DistilBART?
45
+
46
+ **DistilBART** is a **compressed version of the BART model** designed to be **lighter and faster** while retaining most of BART’s performance. It’s the result of **model distillation**, where a smaller model (the *student*) learns from a larger one (the *teacher*), in this case, `facebook/bart-large`.
47
+
48
+ | Attribute | Description |
49
+ |------------------|---------------------------------------------------------------------|
50
+ | **Full Name** | Distilled BART |
51
+ | **Base Model** | `facebook/bart-large` |
52
+ | **Distilled By** | Hugging Face πŸ€— |
53
+ | **Purpose** | Faster inference and smaller footprint for tasks like summarization |
54
+ | **Architecture** | Encoder-decoder Transformer, like BART, but with fewer layers |
55
+
56
+ ---
57
+
58
+ ## βš™οΈ Key Differences: BART vs DistilBART
59
+
60
+ | Feature | BART (Large) | DistilBART |
61
+ |----------------|--------------|------------------------|
62
+ | Encoder Layers | 12 | 6 |
63
+ | Decoder Layers | 12 | 6 |
64
+ | Parameters | ~406M | ~222M |
65
+ | Model Size | ~1.6GB | ~400MB (~55% smaller) |
66
+ | Speed | Slower | ~2x faster |
67
+ | Performance | Very high | Slight drop (~1–2%) |
68
+
69
+ ---
70
+
71
+ ## 🎯 Use Cases
72
+
73
+ - βœ… **Text Summarization** (primary use case)
74
+ - 🌐 **Translation** (basic use)
75
+ - ⚑ Ideal for **edge devices** or **real-time systems** where speed & size matter
76
+
77
+ ---
78
+
79
+ ## πŸ§ͺ Example: Summarization with DistilBART
80
+
81
+ You can easily use DistilBART with Hugging Face Transformers:
82
+
83
+ ```python
84
+ from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
85
+
86
+ # Load pretrained DistilBART model
87
+ tokenizer = AutoTokenizer.from_pretrained("sshleifer/distilbart-cnn-12-6")
88
+ model = AutoModelForSeq2SeqLM.from_pretrained("sshleifer/distilbart-cnn-12-6")
89
+
90
+ # Input text
91
+ ARTICLE = "The Indian Space Research Organisation (ISRO) launched a new satellite today from the Satish Dhawan Space Centre..."
92
+
93
+ # Tokenize and summarize
94
+ inputs = tokenizer([ARTICLE], max_length=1024, return_tensors="pt", truncation=True)
95
+ summary_ids = model.generate(
96
+ inputs["input_ids"],
97
+ max_length=150,
98
+ min_length=40,
99
+ length_penalty=2.0,
100
+ num_beams=4,
101
+ early_stopping=True
102
+ )
103
+
104
+ print(tokenizer.decode(summary_ids[0], skip_special_tokens=True))
105
+ ````
106
+
107
+ ---
108
+
109
+ ## πŸ“¦ Available Variants
110
+
111
+ | Model Name | Task | Description |
112
+ | --------------------------------- | ---------------------------- | ---------------------------------------- |
113
+ | `sshleifer/distilbart-cnn-12-6` | Summarization | Distilled from `facebook/bart-large-cnn` |
114
+ | `philschmid/distilbart-xsum-12-6` | Summarization (XSUM dataset) | Short, abstractive summaries |
115
+
116
+ πŸ”Ž [Find more on Hugging Face Model Hub](https://huggingface.co/models?search=distilbart)
117
+
118
+ ---
119
+
120
+ ## πŸ“˜ Summary
121
+
122
+ * 🧠 **DistilBART** is a distilled, faster version of **BART**
123
+ * 🧩 Ideal for summarization tasks with lower memory and latency requirements
124
+ * πŸ’‘ Trained using **knowledge distillation** from `facebook/bart-large`
125
+ * βš™οΈ Works well in apps needing faster performance without significant loss in quality
126
+
127
+ ---
128
+
129
+ βœ… **Try it now β€” it should be significantly faster!** πŸƒβ€β™‚οΈπŸ’¨
130
+
131
+ ```
132
+
133
+
134
+
135
+
136
+ Thank You
137
+ ```