UAP-Data-Analysis-Tool / rag_search.py
Ashoka74's picture
Update rag_search.py
c05b73a verified
raw
history blame
19.6 kB
import streamlit as st
import pandas as pd
import cohere
import streamlit as st
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from uap_analyzer import UAPParser, UAPAnalyzer, UAPVisualizer
# import ChartGen
# from ChartGen import ChartGPT
from Levenshtein import distance
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix
from stqdm import stqdm
stqdm.pandas()
import streamlit.components.v1 as components
from dateutil import parser
from sentence_transformers import SentenceTransformer
import torch
import squarify
import matplotlib.colors as mcolors
import textwrap
import datamapplot
import json
st.set_option('deprecation.showPyplotGlobalUse', False)
from pandas.api.types import (
is_categorical_dtype,
is_datetime64_any_dtype,
is_numeric_dtype,
is_object_dtype,
)
def plot_treemap(df, column, top_n=32):
# Get the value counts and the top N labels
value_counts = df[column].value_counts()
top_labels = value_counts.iloc[:top_n].index
# Use np.where to replace all values not in the top N with 'Other'
revised_column = f'{column}_revised'
df[revised_column] = np.where(df[column].isin(top_labels), df[column], 'Other')
# Get the value counts including the 'Other' category
sizes = df[revised_column].value_counts().values
labels = df[revised_column].value_counts().index
# Get a gradient of colors
# colors = list(mcolors.TABLEAU_COLORS.values())
n_colors = len(sizes)
colors = plt.cm.Oranges(np.linspace(0.3, 0.9, n_colors))[::-1]
# Get % of each category
percents = sizes / sizes.sum()
# Prepare labels with percentages
labels = [f'{label}\n {percent:.1%}' for label, percent in zip(labels, percents)]
fig, ax = plt.subplots(figsize=(20, 12))
# Plot the treemap
squarify.plot(sizes=sizes, label=labels, alpha=0.7, pad=True, color=colors, text_kwargs={'fontsize': 10})
ax = plt.gca()
# Iterate over text elements and rectangles (patches) in the axes for color adjustment
for text, rect in zip(ax.texts, ax.patches):
background_color = rect.get_facecolor()
r, g, b, _ = mcolors.to_rgba(background_color)
brightness = np.average([r, g, b])
text.set_color('white' if brightness < 0.5 else 'black')
# Adjust font size based on rectangle's area and wrap long text
coef = 0.8
font_size = np.sqrt(rect.get_width() * rect.get_height()) * coef
text.set_fontsize(font_size)
wrapped_text = textwrap.fill(text.get_text(), width=20)
text.set_text(wrapped_text)
plt.axis('off')
plt.gca().invert_yaxis()
plt.gcf().set_size_inches(20, 12)
fig.patch.set_alpha(0)
ax.patch.set_alpha(0)
return fig
def plot_hist(df, column, bins=10, kde=True):
fig, ax = plt.subplots(figsize=(12, 6))
sns.histplot(data=df, x=column, kde=True, bins=bins,color='orange')
# set the ticks and frame in orange
ax.spines['bottom'].set_color('orange')
ax.spines['top'].set_color('orange')
ax.spines['right'].set_color('orange')
ax.spines['left'].set_color('orange')
ax.xaxis.label.set_color('orange')
ax.yaxis.label.set_color('orange')
ax.tick_params(axis='x', colors='orange')
ax.tick_params(axis='y', colors='orange')
ax.title.set_color('orange')
# Set transparent background
fig.patch.set_alpha(0)
ax.patch.set_alpha(0)
return fig
def plot_line(df, x_column, y_columns, figsize=(12, 10), color='orange', title=None, rolling_mean_value=2):
import matplotlib.cm as cm
# Sort the dataframe by the date column
df = df.sort_values(by=x_column)
# Calculate rolling mean for each y_column
if rolling_mean_value:
df[y_columns] = df[y_columns].rolling(len(df) // rolling_mean_value).mean()
# Create the plot
fig, ax = plt.subplots(figsize=figsize)
colors = cm.Oranges(np.linspace(0.2, 1, len(y_columns)))
# Plot each y_column as a separate line with a different color
for i, y_column in enumerate(y_columns):
df.plot(x=x_column, y=y_column, ax=ax, color=colors[i], label=y_column, linewidth=.5)
# Rotate x-axis labels
ax.set_xticklabels(ax.get_xticklabels(), rotation=30, ha='right')
# Format x_column as date if it is
if np.issubdtype(df[x_column].dtype, np.datetime64) or np.issubdtype(df[x_column].dtype, np.timedelta64):
df[x_column] = pd.to_datetime(df[x_column]).dt.date
# Set title, labels, and legend
ax.set_title(title or f'{", ".join(y_columns)} over {x_column}', color=color, fontweight='bold')
ax.set_xlabel(x_column, color=color)
ax.set_ylabel(', '.join(y_columns), color=color)
ax.spines['bottom'].set_color('orange')
ax.spines['top'].set_color('orange')
ax.spines['right'].set_color('orange')
ax.spines['left'].set_color('orange')
ax.xaxis.label.set_color('orange')
ax.yaxis.label.set_color('orange')
ax.tick_params(axis='x', colors='orange')
ax.tick_params(axis='y', colors='orange')
ax.title.set_color('orange')
ax.legend(loc='upper right', bbox_to_anchor=(1, 1), facecolor='black', framealpha=.4, labelcolor='orange', edgecolor='orange')
# Remove background
fig.patch.set_alpha(0)
ax.patch.set_alpha(0)
return fig
def plot_bar(df, x_column, y_column, figsize=(12, 10), color='orange', title=None, rotation=45):
fig, ax = plt.subplots(figsize=figsize)
sns.barplot(data=df, x=x_column, y=y_column, color=color, ax=ax)
ax.set_title(title if title else f'{y_column} by {x_column}', color=color, fontweight='bold')
ax.set_xlabel(x_column, color=color)
ax.set_ylabel(y_column, color=color)
ax.tick_params(axis='x', colors=color)
ax.tick_params(axis='y', colors=color)
plt.xticks(rotation=rotation)
# Remove background
fig.patch.set_alpha(0)
ax.patch.set_alpha(0)
ax.spines['bottom'].set_color('orange')
ax.spines['top'].set_color('orange')
ax.spines['right'].set_color('orange')
ax.spines['left'].set_color('orange')
ax.xaxis.label.set_color('orange')
ax.yaxis.label.set_color('orange')
ax.tick_params(axis='x', colors='orange')
ax.tick_params(axis='y', colors='orange')
ax.title.set_color('orange')
ax.legend(loc='upper right', bbox_to_anchor=(1, 1), facecolor='black', framealpha=.4, labelcolor='orange', edgecolor='orange')
return fig
def plot_grouped_bar(df, x_columns, y_column, figsize=(12, 10), colors=None, title=None):
fig, ax = plt.subplots(figsize=figsize)
width = 0.8 / len(x_columns) # the width of the bars
x = np.arange(len(df)) # the label locations
for i, x_column in enumerate(x_columns):
sns.barplot(data=df, x=x, y=y_column, color=colors[i] if colors else None, ax=ax, width=width, label=x_column)
x += width # add the width of the bar to the x position for the next bar
ax.set_title(title if title else f'{y_column} by {", ".join(x_columns)}', color='orange', fontweight='bold')
ax.set_xlabel('Groups', color='orange')
ax.set_ylabel(y_column, color='orange')
ax.set_xticks(x - width * len(x_columns) / 2)
ax.set_xticklabels(df.index)
ax.tick_params(axis='x', colors='orange')
ax.tick_params(axis='y', colors='orange')
# Remove background
fig.patch.set_alpha(0)
ax.patch.set_alpha(0)
ax.spines['bottom'].set_color('orange')
ax.spines['top'].set_color('orange')
ax.spines['right'].set_color('orange')
ax.spines['left'].set_color('orange')
ax.xaxis.label.set_color('orange')
ax.yaxis.label.set_color('orange')
ax.title.set_color('orange')
ax.legend(loc='upper right', bbox_to_anchor=(1, 1), facecolor='black', framealpha=.4, labelcolor='orange', edgecolor='orange')
return fig
def filter_dataframe(df: pd.DataFrame) -> pd.DataFrame:
"""
Adds a UI on top of a dataframe to let viewers filter columns
Args:
df (pd.DataFrame): Original dataframe
Returns:
pd.DataFrame: Filtered dataframe
"""
title_font = "Arial"
body_font = "Arial"
title_size = 32
colors = ["red", "green", "blue"]
interpretation = False
extract_docx = False
title = "My Chart"
regex = ".*"
img_path = 'default_image.png'
df_ = df.copy()
#modification_container = st.container()
#with modification_container:
to_filter_columns = st.multiselect("Filter dataframe on", df_.columns)
date_column = None
filtered_columns = []
for column in to_filter_columns:
left, right = st.columns((1, 20))
# Treat columns with < 200 unique values as categorical if not date or numeric
if is_categorical_dtype(df_[column]) or (df_[column].nunique() < 120 and not is_datetime64_any_dtype(df_[column]) and not is_numeric_dtype(df_[column])):
user_cat_input = right.multiselect(
f"Values for {column}",
df_[column].value_counts().index.tolist(),
default=list(df_[column].value_counts().index)
)
df_ = df_[df_[column].isin(user_cat_input)]
filtered_columns.append(column)
with st.status(f"Category Distribution: {column}", expanded=False) as stat:
st.pyplot(plot_treemap(df_, column))
elif is_numeric_dtype(df_[column]):
_min = float(df_[column].min())
_max = float(df_[column].max())
step = (_max - _min) / 100
user_num_input = right.slider(
f"Values for {column}",
min_value=_min,
max_value=_max,
value=(_min, _max),
step=step,
)
df_ = df_[df_[column].between(*user_num_input)]
filtered_columns.append(column)
# Chart_GPT = ChartGPT(df_, title_font, body_font, title_size,
# colors, interpretation, extract_docx, img_path)
with st.status(f"Numerical Distribution: {column}", expanded=False) as stat_:
st.pyplot(plot_hist(df_, column, bins=int(round(len(df_[column].unique())-1)/2)))
elif is_object_dtype(df_[column]):
try:
df_[column] = pd.to_datetime(df_[column], infer_datetime_format=True, errors='coerce')
except Exception:
try:
df_[column] = df_[column].apply(parser.parse)
except Exception:
pass
if is_datetime64_any_dtype(df_[column]):
df_[column] = df_[column].dt.tz_localize(None)
min_date = df_[column].min().date()
max_date = df_[column].max().date()
user_date_input = right.date_input(
f"Values for {column}",
value=(min_date, max_date),
min_value=min_date,
max_value=max_date,
)
# if len(user_date_input) == 2:
# start_date, end_date = user_date_input
# df_ = df_.loc[df_[column].dt.date.between(start_date, end_date)]
if len(user_date_input) == 2:
user_date_input = tuple(map(pd.to_datetime, user_date_input))
start_date, end_date = user_date_input
# Determine the most appropriate time unit for plot
time_units = {
'year': df_[column].dt.year,
'month': df_[column].dt.to_period('M'),
'day': df_[column].dt.date
}
unique_counts = {unit: col.nunique() for unit, col in time_units.items()}
closest_to_36 = min(unique_counts, key=lambda k: abs(unique_counts[k] - 36))
# Group by the most appropriate time unit and count occurrences
grouped = df_.groupby(time_units[closest_to_36]).size().reset_index(name='count')
grouped.columns = [column, 'count']
# Create a complete date range
if closest_to_36 == 'year':
date_range = pd.date_range(start=f"{start_date.year}-01-01", end=f"{end_date.year}-12-31", freq='YS')
elif closest_to_36 == 'month':
date_range = pd.date_range(start=start_date.replace(day=1), end=end_date + pd.offsets.MonthEnd(0), freq='MS')
else: # day
date_range = pd.date_range(start=start_date, end=end_date, freq='D')
# Create a DataFrame with the complete date range
complete_range = pd.DataFrame({column: date_range})
# Convert the date column to the appropriate format based on closest_to_36
if closest_to_36 == 'year':
complete_range[column] = complete_range[column].dt.year
elif closest_to_36 == 'month':
complete_range[column] = complete_range[column].dt.to_period('M')
# Merge the complete range with the grouped data
final_data = pd.merge(complete_range, grouped, on=column, how='left').fillna(0)
with st.status(f"Date Distributions: {column}", expanded=False) as stat:
try:
st.pyplot(plot_bar(final_data, column, 'count'))
except Exception as e:
st.error(f"Error plotting bar chart: {e}")
df_ = df_.loc[df_[column].between(start_date, end_date)]
date_column = column
if date_column and filtered_columns:
numeric_columns = [col for col in filtered_columns if is_numeric_dtype(df_[col])]
if numeric_columns:
fig = plot_line(df_, date_column, numeric_columns)
with st.status(f"Date Numerical Distributions: {column}", expanded=False) as stat:
try:
st.pyplot(fig)
except Exception as e:
st.error(f"Error plotting line chart: {e}")
pass # now to deal with categorical columns
categorical_columns = [col for col in filtered_columns if is_categorical_dtype(df_[col])]
if categorical_columns:
fig2 = plot_grouped_bar(df_, categorical_columns, date_column)
with st.status(f"Date Categorical Distributions: {column}", expanded=False) as sta:
try:
st.pyplot(fig2)
except Exception as e:
st.error(f"Error plotting bar chart: {e}")
else:
user_text_input = right.text_input(
f"Substring or regex in {column}",
)
if user_text_input:
df_ = df_[df_[column].astype(str).str.contains(user_text_input)]
# write len of df after filtering with % of original
st.write(f"{len(df_)} rows ({len(df_) / len(df) * 100:.2f}%)")
return df_
# Initialize session state
if 'analyzers' not in st.session_state:
st.session_state['analyzers'] = []
if 'col_names' not in st.session_state:
st.session_state['col_names'] = []
if 'clusters' not in st.session_state:
st.session_state['clusters'] = {}
if 'new_data' not in st.session_state:
st.session_state['new_data'] = pd.DataFrame()
if 'dataset' not in st.session_state:
st.session_state['dataset'] = pd.DataFrame()
if 'data_processed' not in st.session_state:
st.session_state['data_processed'] = False
if 'stage' not in st.session_state:
st.session_state['stage'] = 0
if 'filtered_data' not in st.session_state:
st.session_state['filtered_data'] = None
if 'gemini_answer' not in st.session_state:
st.session_state['gemini_answer'] = None
if 'parsed_responses' not in st.session_state:
st.session_state['parsed_responses'] = None
if 'json_format' not in st.session_state:
st.session_state['json_format'] = None
if 'api_key_valid' not in st.session_state:
st.session_state['api_key_valid'] = False
if 'previous_api_key' not in st.session_state:
st.session_state['previous_api_key'] = None
OPENAI_KEY = st.secrets["OPENAI_KEY"]
GEMINI_KEY = st.secrets["GEMINI_KEY"]
COHERE_KEY = st.secrets["COHERE_KEY"]
def load_data(file_path, key='df'):
return pd.read_hdf(file_path, key=key)
datasett = st.file_uploader("Upload Raw DataFrame", type=["csv", "xlsx"])
if datasett is not None:
try:
data = pd.read_csv(datasett) if datasett.type == "text/csv" else pd.read_excel(datasett)
filtered_data = filter_dataframe(data)
st.session_state['parsed_responses'] = filtered_data
st.dataframe(filtered_data)
except Exception as e:
st.error(f"An error occurred while reading the file: {e}")
col1, col2 = st.columns(2)
with col1:
columns_to_query = st.multiselect(
label='Select columns to analyze',
options=st.session_state['parsed_responses'].columns)
with col2:
COHERE_KEY = st.text_input('Cohere APIs Key', COHERE_KEY, type='password', help="Enter your Cohere API key")
question = st.text_input("Ask a question")
if st.session_state['parsed_responses'] is not None and question and COHERE_KEY:
co = cohere.Client(api_key = COHERE_KEY)
documents = st.session_state['parsed_responses'][columns_to_query].to_dict('records')
json_documents = [json.dumps(doc) for doc in documents]
try:
results = co.rerank(
model="rerank-english-v3.0",
query=question,
documents=json_documents,
top_n=5,
return_documents=True
)
st.subheader("Reranked Results:")
# Create a new dataframe with reranked results
reranked_indices = [result.index for result in results.results]
reranked_scores = [result.relevance_score for result in results.results]
reranked_df = st.session_state['parsed_responses'].iloc[reranked_indices].copy()
reranked_df['relevance_score'] = reranked_scores
reranked_df['rank'] = range(1, len(reranked_indices) + 1)
# Set the new index to be the rank
reranked_df.set_index('rank', inplace=True)
# Display the reranked dataframe
st.dataframe(reranked_df)
# markdown format
#for idx, result in enumerate(results.results, 1):
# st.write(f"Result {idx}:")
# st.write(f"Index: {result.index}")
# st.write(f"Relevance Score: {result.relevance_score}")
# st.write(f"Document: {json.loads(json_documents[result.index])}")
# st.write("---")
except Exception as e:
st.error(f"An error occurred during reranking: {e}")