Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -81,50 +81,92 @@ os.makedirs(app.config['MODEL_FOLDER'], exist_ok=True)
|
|
81 |
|
82 |
# Prediction analysis models loaded from Hugging Face.
|
83 |
|
|
|
|
|
84 |
src_path = hf_hub_download(
|
85 |
repo_id="WebashalarForML/Diamond_model_",
|
86 |
-
filename="
|
87 |
cache_dir=MODEL_FOLDER
|
88 |
)
|
89 |
-
dst_path = os.path.join(MODEL_FOLDER, "
|
90 |
shutil.copy(src_path, dst_path)
|
91 |
-
|
|
|
92 |
|
93 |
src_path = hf_hub_download(
|
94 |
repo_id="WebashalarForML/Diamond_model_",
|
95 |
-
filename="
|
96 |
cache_dir=MODEL_FOLDER
|
97 |
)
|
98 |
-
dst_path = os.path.join(MODEL_FOLDER, "
|
99 |
shutil.copy(src_path, dst_path)
|
100 |
-
|
101 |
-
|
102 |
# Prediction analysis models loaded from Hugging Face.
|
103 |
src_path = hf_hub_download(
|
104 |
repo_id="WebashalarForML/Diamond_model_",
|
105 |
-
filename="
|
106 |
cache_dir=MODEL_FOLDER
|
107 |
)
|
108 |
-
dst_path = os.path.join(MODEL_FOLDER, "
|
109 |
shutil.copy(src_path, dst_path)
|
110 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
|
112 |
-
#classsification model on the task
|
113 |
src_path = hf_hub_download(
|
114 |
repo_id="WebashalarForML/Diamond_model_",
|
115 |
-
filename="
|
116 |
cache_dir=MODEL_FOLDER
|
117 |
)
|
118 |
-
dst_path = os.path.join(MODEL_FOLDER, "
|
119 |
shutil.copy(src_path, dst_path)
|
120 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
|
122 |
#print("makable_model type:", type(makable_model))
|
123 |
#print("grade_model type:", type(grade_model))
|
124 |
#print("bygrade_model type:", type(bygrade_model))
|
125 |
#print("gia_model type:", type(gia_model))
|
126 |
print("================================")
|
127 |
-
print("mkble_amt_class_model type:", type(mkble_amt_class_model))
|
128 |
|
129 |
# List of label encoder names.
|
130 |
encoder_list = [
|
@@ -256,56 +298,52 @@ def process_dataframe(df):
|
|
256 |
# -------------------------
|
257 |
try:
|
258 |
|
259 |
-
# for model
|
260 |
-
df_pred_0 = df_pred
|
261 |
-
df_pred_0['
|
262 |
print(df_pred_0.columns)
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
|
|
269 |
print(df_pred_0.columns)
|
270 |
|
271 |
-
# for model
|
272 |
-
|
273 |
-
|
274 |
-
df_pred_1['change_in_amt_mkble'] = pd.DataFrame(mkble_amt_class_model.predict(df_pred_1), columns=["pred_change_in_eng_to_mkble"])
|
275 |
-
print(df_pred_1.columns)
|
276 |
-
df_pred_1 = df_pred_1[['Tag', 'EngCts', 'EngShp', 'EngQua', 'EngCol', 'EngCut', 'EngPol',
|
277 |
-
'EngSym', 'EngFlo', 'EngNts', 'EngMikly', 'EngBlk', 'EngWht', 'EngOpen',
|
278 |
-
'EngPav', 'EngAmt',
|
279 |
-
'change_in_amt_mkble'
|
280 |
-
]]
|
281 |
-
df_pred_1['Makable_Predicted'] = pd.DataFrame(np.expm1(makable_model_1.predict(df_pred_1)), columns=["Predicted"])
|
282 |
-
print(df_pred_1.columns)
|
283 |
-
|
284 |
-
# for model 1.50 to 1.99
|
285 |
-
|
286 |
-
df_pred_2 = df_pred[(df_pred[['EngCts']] > 1.49).all(axis=1) & (df_pred[['EngCts']] < 2.00).all(axis=1)]
|
287 |
-
df_pred_2['change_in_amt_mkble'] = pd.DataFrame(mkble_amt_class_model.predict(df_pred_2), columns=["pred_change_in_eng_to_mkble"])
|
288 |
-
print(df_pred_2.columns)
|
289 |
-
df_pred_2 = df_pred_2[['Tag', 'EngCts', 'EngShp', 'EngQua', 'EngCol', 'EngCut', 'EngPol',
|
290 |
-
'EngSym', 'EngFlo', 'EngNts', 'EngMikly', 'EngBlk', 'EngWht', 'EngOpen',
|
291 |
-
'EngPav', 'EngAmt',
|
292 |
-
'change_in_amt_mkble'
|
293 |
-
]]
|
294 |
-
df_pred_2['Makable_Predicted'] = pd.DataFrame(np.expm1(makable_model_2.predict(df_pred_2)), columns=["Predicted"])
|
295 |
-
print(df_pred_2.columns)
|
296 |
|
297 |
-
#
|
298 |
-
|
|
|
|
|
|
|
|
|
|
|
299 |
|
300 |
-
#
|
301 |
-
|
302 |
-
|
303 |
-
print("df_pred_main------------->", df_pred_main.columns)
|
304 |
|
305 |
-
#
|
306 |
-
|
307 |
-
|
308 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
309 |
try:
|
310 |
df_pred_main[col] = loaded_label_encoder[col].inverse_transform(df_pred_main[col].astype(int))
|
311 |
except ValueError as e:
|
@@ -318,7 +356,6 @@ def process_dataframe(df):
|
|
318 |
print("EngWht", df_pred_main['EngWht'].unique())
|
319 |
print("EngOpen", df_pred_main['EngOpen'].unique())
|
320 |
print("EngPav", df_pred_main['EngPav'].unique())
|
321 |
-
|
322 |
|
323 |
# Final return with full data for pagination.
|
324 |
df_pred_main['EngBlk'] = df_pred_main['EngBlk'].fillna("-")
|
@@ -361,24 +398,8 @@ def report_view():
|
|
361 |
|
362 |
df_page = df.iloc[start_idx:end_idx]
|
363 |
|
364 |
-
|
365 |
-
|
366 |
-
# def add_arrow(row):
|
367 |
-
# try:
|
368 |
-
# pred = float(row['Makable_Predicted'])
|
369 |
-
# diff = float(row['Makable_Diff'])
|
370 |
-
# if np.isnan(pred) or np.isnan(diff):
|
371 |
-
# return '-'
|
372 |
-
# arrow = '↑' if diff > 0 else '↓'
|
373 |
-
# return f"{pred:.3f} {arrow}"
|
374 |
-
# except:
|
375 |
-
# return row['Makable_Predicted']
|
376 |
-
|
377 |
-
# df_page['Makable_Predicted'] = df_page.apply(add_arrow, axis=1)
|
378 |
-
# # -------------------------------------V CHnages --------------------------------------
|
379 |
-
|
380 |
-
|
381 |
-
# -------------------------------------V Colored CHnages --------------------------------------
|
382 |
def add_colored_arrow(row):
|
383 |
try:
|
384 |
pred = float(row['Makable_Predicted'])
|
@@ -390,7 +411,7 @@ def report_view():
|
|
390 |
else:
|
391 |
return f'{pred:.3f} <span style="color:red;">↓</span>'
|
392 |
except:
|
393 |
-
return row['Makable_Predicted']
|
394 |
|
395 |
df_page['Makable_Predicted'] = df_page.apply(add_colored_arrow, axis=1)
|
396 |
# -------------------------------------V Colored CHnages --------------------------------------
|
@@ -428,14 +449,15 @@ def report_view():
|
|
428 |
print("------------------------------------------------------------------------------------------------")
|
429 |
print("df_page['Makable_Diff']", df_page['Makable_Diff'])
|
430 |
print("------------------------------------------------------------------------------------------------")
|
431 |
-
|
432 |
# ------------------ V changes --------------------------------------
|
433 |
# Prepare chart data (convert to JSON for JS)
|
434 |
chart_data = {
|
435 |
-
'EngCts':
|
436 |
-
'Makable_Predicted':
|
437 |
-
'Makable_Diff':
|
438 |
}
|
|
|
439 |
# ------------------ V changes --------------------------------------
|
440 |
|
441 |
return render_template('output.html',
|
|
|
81 |
|
82 |
# Prediction analysis models loaded from Hugging Face.
|
83 |
|
84 |
+
|
85 |
+
#classsification model on the task
|
86 |
src_path = hf_hub_download(
|
87 |
repo_id="WebashalarForML/Diamond_model_",
|
88 |
+
filename="CLASS_DUMMY/LR_best_2_clas_shp_change.pkl",
|
89 |
cache_dir=MODEL_FOLDER
|
90 |
)
|
91 |
+
dst_path = os.path.join(MODEL_FOLDER, "LR_best_2_clas_shp_change.pkl")
|
92 |
shutil.copy(src_path, dst_path)
|
93 |
+
shape_change = load(dst_path)
|
94 |
+
|
95 |
|
96 |
src_path = hf_hub_download(
|
97 |
repo_id="WebashalarForML/Diamond_model_",
|
98 |
+
filename="CLASS_DUMMY/LR_best_2_class_blk(M)_change.pkl",
|
99 |
cache_dir=MODEL_FOLDER
|
100 |
)
|
101 |
+
dst_path = os.path.join(MODEL_FOLDER, "LR_best_2_class_blk(M)_change.pkl")
|
102 |
shutil.copy(src_path, dst_path)
|
103 |
+
blk_change = load(dst_path)
|
104 |
+
'''
|
105 |
# Prediction analysis models loaded from Hugging Face.
|
106 |
src_path = hf_hub_download(
|
107 |
repo_id="WebashalarForML/Diamond_model_",
|
108 |
+
filename="CLASS_DUMMY/LR_best_2_class_wht(M)_change.pkl",
|
109 |
cache_dir=MODEL_FOLDER
|
110 |
)
|
111 |
+
dst_path = os.path.join(MODEL_FOLDER, "LR_best_2_class_wht(M)_change.pkl")
|
112 |
shutil.copy(src_path, dst_path)
|
113 |
+
wht_change = load(dst_path)
|
114 |
+
|
115 |
+
|
116 |
+
src_path = hf_hub_download(
|
117 |
+
repo_id="WebashalarForML/Diamond_model_",
|
118 |
+
filename="CLASS_DUMMY/LR_best_2_class_pav(M)_change.pkl",
|
119 |
+
cache_dir=MODEL_FOLDER
|
120 |
+
)
|
121 |
+
dst_path = os.path.join(MODEL_FOLDER, "LR_best_2_class_pav(M)_change.pkl")
|
122 |
+
shutil.copy(src_path, dst_path)
|
123 |
+
pav_change = load(dst_path)
|
124 |
+
|
125 |
+
src_path = hf_hub_download(
|
126 |
+
repo_id="WebashalarForML/Diamond_model_",
|
127 |
+
filename="CLASS_DUMMY/LR_best_2_class_open(M)_change.pkl",
|
128 |
+
cache_dir=MODEL_FOLDER
|
129 |
+
)
|
130 |
+
dst_path = os.path.join(MODEL_FOLDER, "LR_best_2_class_open(M)_change.pkl")
|
131 |
+
shutil.copy(src_path, dst_path)
|
132 |
+
open_change = load(dst_path)
|
133 |
+
|
134 |
+
# other param class change
|
135 |
+
src_path = hf_hub_download(
|
136 |
+
repo_id="WebashalarForML/Diamond_model_",
|
137 |
+
filename="CLASS_DUMMY/LR_best_2_class_col_change.pkl",
|
138 |
+
cache_dir=MODEL_FOLDER
|
139 |
+
)
|
140 |
+
dst_path = os.path.join(MODEL_FOLDER, "LR_best_2_class_col_change.pkl")
|
141 |
+
shutil.copy(src_path, dst_path)
|
142 |
+
col_change = load(dst_path)
|
143 |
|
|
|
144 |
src_path = hf_hub_download(
|
145 |
repo_id="WebashalarForML/Diamond_model_",
|
146 |
+
filename="CLASS_DUMMY/LR_best_2_class_qua_change.pkl",
|
147 |
cache_dir=MODEL_FOLDER
|
148 |
)
|
149 |
+
dst_path = os.path.join(MODEL_FOLDER, "LR_best_2_class_qua_change.pkl")
|
150 |
shutil.copy(src_path, dst_path)
|
151 |
+
qua_change = load(dst_path)
|
152 |
+
|
153 |
+
src_path = hf_hub_download(
|
154 |
+
repo_id="WebashalarForML/Diamond_model_",
|
155 |
+
filename="CLASS_DUMMY/LR_best_2_class_cut_change.pkl",
|
156 |
+
cache_dir=MODEL_FOLDER
|
157 |
+
)
|
158 |
+
dst_path = os.path.join(MODEL_FOLDER, "LR_best_2_class_cut_change.pkl")
|
159 |
+
shutil.copy(src_path, dst_path)
|
160 |
+
cut_change = load(dst_path)
|
161 |
+
|
162 |
+
'''
|
163 |
|
164 |
#print("makable_model type:", type(makable_model))
|
165 |
#print("grade_model type:", type(grade_model))
|
166 |
#print("bygrade_model type:", type(bygrade_model))
|
167 |
#print("gia_model type:", type(gia_model))
|
168 |
print("================================")
|
169 |
+
#print("mkble_amt_class_model type:", type(mkble_amt_class_model))
|
170 |
|
171 |
# List of label encoder names.
|
172 |
encoder_list = [
|
|
|
298 |
# -------------------------
|
299 |
try:
|
300 |
|
301 |
+
# for model BLK CODE
|
302 |
+
df_pred_0 = df_pred.copy()
|
303 |
+
df_pred_0['Change_Blk_Eng_to_Mkbl_value'] = pd.DataFrame(blk_change.predict(df_pred), columns=["Change_Blk_Eng_to_Mkbl_value"])
|
304 |
print(df_pred_0.columns)
|
305 |
+
|
306 |
+
# for model WHT CODE
|
307 |
+
df_pred_0['Change_Wht_Eng_to_Mkbl_value'] = pd.DataFrame(shape_change.predict(df_pred), columns=["Change_Wht_Eng_to_Mkbl_value"])
|
308 |
+
print(df_pred_0.columns)
|
309 |
+
'''
|
310 |
+
# for model PAV CODE (need change)
|
311 |
+
df_pred_0['Change_Pav_Eng_to_Mkbl_value'] = pd.DataFrame(mkble_amt_class_model.predict(df_pred), columns=["Change_Pav_Eng_to_Mkbl_value"])
|
312 |
print(df_pred_0.columns)
|
313 |
|
314 |
+
# for model OPEN CODE (need change)
|
315 |
+
df_pred_0['Change_Open_Eng_to_Mkbl_value'] = pd.DataFrame(mkble_amt_class_model.predict(df_pred), columns=["Change_Open_Eng_to_Mkbl_value"])
|
316 |
+
print(df_pred_0.columns)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
317 |
|
318 |
+
# for model SHP CODE (need change)
|
319 |
+
df_pred_0['Change_shape_value'] = pd.DataFrame(mkble_amt_class_model.predict(df_pred), columns=["Change_shape_value"])
|
320 |
+
print(df_pred_0.columns)
|
321 |
+
|
322 |
+
# for model COL CODE (need change)
|
323 |
+
df_pred_0['Change_color_value'] = pd.DataFrame(mkble_amt_class_model.predict(df_pred), columns=["Change_color_value"])
|
324 |
+
print(df_pred_0.columns)
|
325 |
|
326 |
+
# for model CUT CODE (need change)
|
327 |
+
df_pred_0['Change_cut_value'] = pd.DataFrame(mkble_amt_class_model.predict(df_pred), columns=["Change_cut_value"])
|
328 |
+
print(df_pred_0.columns)
|
|
|
329 |
|
330 |
+
# for model QUA CODE (need change)
|
331 |
+
df_pred_0['Change_quality_value'] = pd.DataFrame(mkble_amt_class_model.predict(df_pred), columns=["Change_quality_value"])
|
332 |
+
print(df_pred_0.columns)
|
333 |
+
'''
|
334 |
+
# Concatenate the DataFrames row-wise
|
335 |
+
#df_pred_main = pd.concat([df_pred_0, df_pred_1, df_pred_0], ignore_index=True)
|
336 |
+
df_pred_main = df_pred_0.copy()
|
337 |
+
|
338 |
+
for col in ['Tag', 'EngShp', 'EngQua', 'EngCol', 'EngCut', 'EngPol', 'EngSym', 'EngFlo',
|
339 |
+
'EngNts', 'EngMikly', 'EngLab','EngBlk', 'EngWht', 'EngOpen','EngPav',
|
340 |
+
'Change_cts_value', 'Change_shape_value', 'Change_quality_value', 'Change_color_value',
|
341 |
+
'Change_cut_value', 'Change_Blk_Eng_to_Mkbl_value', 'Change_Wht_Eng_to_Mkbl_value',
|
342 |
+
'Change_Open_Eng_to_Mkbl_value', 'Change_Pav_Eng_to_Mkbl_value', 'Change_Blk_Eng_to_Grd_value',
|
343 |
+
'Change_Wht_Eng_to_Grd_value', 'Change_Open_Eng_to_Grd_value', 'Change_Pav_Eng_to_Grd_value',
|
344 |
+
'Change_Blk_Eng_to_ByGrd_value', 'Change_Wht_Eng_to_ByGrd_value', 'Change_Open_Eng_to_ByGrd_value',
|
345 |
+
'Change_Pav_Eng_to_ByGrd_value', 'Change_Blk_Eng_to_Gia_value', 'Change_Wht_Eng_to_Gia_value',
|
346 |
+
'Change_Open_Eng_to_Gia_value', 'Change_Pav_Eng_to_Gia_value']:
|
347 |
try:
|
348 |
df_pred_main[col] = loaded_label_encoder[col].inverse_transform(df_pred_main[col].astype(int))
|
349 |
except ValueError as e:
|
|
|
356 |
print("EngWht", df_pred_main['EngWht'].unique())
|
357 |
print("EngOpen", df_pred_main['EngOpen'].unique())
|
358 |
print("EngPav", df_pred_main['EngPav'].unique())
|
|
|
359 |
|
360 |
# Final return with full data for pagination.
|
361 |
df_pred_main['EngBlk'] = df_pred_main['EngBlk'].fillna("-")
|
|
|
398 |
|
399 |
df_page = df.iloc[start_idx:end_idx]
|
400 |
|
401 |
+
# -------------------------------------V Colored CHnages --------------------------------------
|
402 |
+
'''
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
403 |
def add_colored_arrow(row):
|
404 |
try:
|
405 |
pred = float(row['Makable_Predicted'])
|
|
|
411 |
else:
|
412 |
return f'{pred:.3f} <span style="color:red;">↓</span>'
|
413 |
except:
|
414 |
+
return row['Makable_Predicted'] or []
|
415 |
|
416 |
df_page['Makable_Predicted'] = df_page.apply(add_colored_arrow, axis=1)
|
417 |
# -------------------------------------V Colored CHnages --------------------------------------
|
|
|
449 |
print("------------------------------------------------------------------------------------------------")
|
450 |
print("df_page['Makable_Diff']", df_page['Makable_Diff'])
|
451 |
print("------------------------------------------------------------------------------------------------")
|
452 |
+
'''
|
453 |
# ------------------ V changes --------------------------------------
|
454 |
# Prepare chart data (convert to JSON for JS)
|
455 |
chart_data = {
|
456 |
+
'EngCts': [],
|
457 |
+
'Makable_Predicted': [],
|
458 |
+
'Makable_Diff': []
|
459 |
}
|
460 |
+
|
461 |
# ------------------ V changes --------------------------------------
|
462 |
|
463 |
return render_template('output.html',
|