Wedyan2023 commited on
Commit
73b3081
·
verified ·
1 Parent(s): d6854a8

Delete app6.py

Browse files
Files changed (1) hide show
  1. app6.py +0 -190
app6.py DELETED
@@ -1,190 +0,0 @@
1
- import numpy as np
2
- import streamlit as st
3
- from openai import OpenAI
4
- import os
5
- from dotenv import load_dotenv
6
- import random
7
-
8
- os.environ["BROWSER_GATHERUSAGESTATS"] = "false"
9
- load_dotenv()
10
-
11
- # Initialize the client
12
- client = OpenAI(
13
- base_url="https://api-inference.huggingface.co/v1",
14
- api_key=os.environ.get('TOKEN2') # Add your Huggingface token here
15
- )
16
-
17
- # Supported models
18
- model_links = {
19
- "Meta-Llama-3-8B": "meta-llama/Meta-Llama-3-8B-Instruct"
20
- }
21
-
22
- # Reset conversation
23
- def reset_conversation():
24
- st.session_state.conversation = []
25
- st.session_state.messages = []
26
-
27
- # Define the available models
28
- models = [key for key in model_links.keys()]
29
-
30
- # Sidebar for model selection
31
- selected_model = st.sidebar.selectbox("Select Model", models)
32
- temp_values = st.sidebar.slider('Select a temperature value', 0.0, 1.0, 0.5)
33
- st.sidebar.button('Reset Chat', on_click=reset_conversation)
34
- st.sidebar.write(f"You're now chatting with **{selected_model}**")
35
- st.sidebar.markdown("*Generated content may be inaccurate or false.*")
36
-
37
- # Chat initialization
38
- if "messages" not in st.session_state:
39
- st.session_state.messages = []
40
-
41
- for message in st.session_state.messages:
42
- with st.chat_message(message["role"]):
43
- st.markdown(message["content"])
44
-
45
- # Main logic to choose between data generation and data labeling
46
- task_choice = st.selectbox("Choose Task", ["Data Generation", "Data Labeling"])
47
-
48
- if task_choice == "Data Generation":
49
- classification_type = st.selectbox(
50
- "Choose Classification Type",
51
- ["Sentiment Analysis", "Binary Classification", "Multi-Class Classification"]
52
- )
53
-
54
- if classification_type == "Sentiment Analysis":
55
- st.write("Sentiment Analysis: Positive, Negative, Neutral")
56
- labels = ["Positive", "Negative", "Neutral"]
57
- elif classification_type == "Binary Classification":
58
- label_1 = st.text_input("Enter first class")
59
- label_2 = st.text_input("Enter second class")
60
- labels = [label_1, label_2]
61
- elif classification_type == "Multi-Class Classification":
62
- num_classes = st.slider("How many classes?", 3, 10, 3)
63
- labels = [st.text_input(f"Class {i+1}") for i in range(num_classes)]
64
-
65
- domain = st.selectbox("Choose Domain", ["Restaurant reviews", "E-commerce reviews", "Custom"])
66
- if domain == "Custom":
67
- domain = st.text_input("Specify custom domain")
68
-
69
- min_words = st.number_input("Minimum words per example", min_value=10, max_value=90, value=10)
70
- max_words = st.number_input("Maximum words per example", min_value=10, max_value=90, value=90)
71
-
72
- few_shot = st.radio("Do you want to use few-shot examples?", ["Yes", "No"])
73
- if few_shot == "Yes":
74
- num_examples = st.slider("How many few-shot examples?", 1, 5, 1)
75
- few_shot_examples = [
76
- {"content": st.text_area(f"Example {i+1}"), "label": st.selectbox(f"Label for example {i+1}", labels)}
77
- for i in range(num_examples)
78
- ]
79
- else:
80
- few_shot_examples = []
81
-
82
- num_to_generate = st.number_input("How many examples to generate?", min_value=1, max_value=100, value=10)
83
- user_prompt = st.text_area("Enter your prompt to guide example generation", "")
84
-
85
- # System prompt generation
86
- system_prompt = f"You are a professional {classification_type.lower()} expert. Your role is to generate data for {domain}.\n\n"
87
- if few_shot_examples:
88
- system_prompt += "Use the following few-shot examples as a reference:\n"
89
- for example in few_shot_examples:
90
- system_prompt += f"Example: {example['content']} \n Label: {example['label']}\n"
91
- system_prompt += f"Generate {num_to_generate} unique examples with diverse phrasing.\n"
92
- system_prompt += f"Each example should have between {min_words} and {max_words} words.\n"
93
- system_prompt += f"Use the labels specified: {', '.join(labels)}.\n"
94
- if user_prompt:
95
- system_prompt += f"Additional instructions: {user_prompt}\n"
96
-
97
- st.write("System Prompt:")
98
- st.code(system_prompt)
99
-
100
- if st.button("Generate Examples"):
101
- with st.spinner("Generating..."):
102
- st.session_state.messages.append({"role": "system", "content": system_prompt})
103
-
104
- try:
105
- stream = client.chat.completions.create(
106
- model=model_links[selected_model],
107
- messages=[
108
- {"role": m["role"], "content": m["content"]}
109
- for m in st.session_state.messages
110
- ],
111
- temperature=temp_values,
112
- stream=True,
113
- max_tokens=3000,
114
- )
115
- response = st.write_stream(stream)
116
- except Exception as e:
117
- st.error("An error occurred during generation.")
118
- st.error(f"Error details: {str(e)}")
119
-
120
- st.session_state.messages.append({"role": "assistant", "content": response})
121
-
122
- else: # Data Labeling Process
123
- labeling_classification_type = st.selectbox(
124
- "Choose Classification Type for Labeling",
125
- ["Sentiment Analysis", "Binary Classification", "Multi-Class Classification"]
126
- )
127
-
128
- if labeling_classification_type == "Sentiment Analysis":
129
- st.write("Sentiment Analysis: Positive, Negative, Neutral")
130
- labeling_labels = ["Positive", "Negative", "Neutral"]
131
- elif labeling_classification_type == "Binary Classification":
132
- labeling_label_1 = st.text_input("Enter first class for labeling")
133
- labeling_label_2 = st.text_input("Enter second class for labeling")
134
- labeling_labels = [labeling_label_1, labeling_label_2]
135
- elif labeling_classification_type == "Multi-Class Classification":
136
- labeling_num_classes = st.slider("How many classes for labeling?", 3, 10, 3)
137
- labeling_labels = [st.text_input(f"Labeling Class {i+1}") for i in range(labeling_num_classes)]
138
-
139
- labeling_few_shot = st.radio("Do you want to add few-shot examples for labeling?", ["Yes", "No"])
140
- if labeling_few_shot == "Yes":
141
- labeling_num_examples = st.slider("How many few-shot examples for labeling?", 1, 5, 1)
142
- labeling_few_shot_examples = [
143
- {"content": st.text_area(f"Labeling Example {i+1}"),
144
- "label": st.selectbox(f"Label for labeling example {i+1}", labeling_labels)}
145
- for i in range(labeling_num_examples)
146
- ]
147
- else:
148
- labeling_few_shot_examples = []
149
-
150
- text_to_classify = st.text_area("Enter text to classify")
151
-
152
- if st.button("Classify Text"):
153
- if text_to_classify:
154
- labeling_system_prompt = (
155
- f"You are a professional {labeling_classification_type.lower()} expert. "
156
- f"Classify the following text using these labels: {', '.join(labeling_labels)}.\n\n"
157
- )
158
- if labeling_few_shot_examples:
159
- labeling_system_prompt += "Here are some example classifications:\n"
160
- for example in labeling_few_shot_examples:
161
- labeling_system_prompt += f"Review: {example['content']}\nLabel: {example['label']}\n\n"
162
-
163
- labeling_system_prompt += (
164
- f"Text to classify: {text_to_classify}\n"
165
- f"Provide only the classification result in this format:\n"
166
- f"'Review: [text provided] Label: [appropriate label]'\n"
167
- )
168
-
169
- with st.spinner("Classifying..."):
170
- st.session_state.messages.append({"role": "system", "content": labeling_system_prompt})
171
-
172
- try:
173
- stream = client.chat.completions.create(
174
- model=model_links[selected_model],
175
- messages=[
176
- {"role": m["role"], "content": m["content"]}
177
- for m in st.session_state.messages
178
- ],
179
- temperature=temp_values,
180
- stream=True,
181
- max_tokens=1000,
182
- )
183
- response = st.write_stream(stream)
184
- except Exception as e:
185
- st.error("An error occurred during classification.")
186
- st.error(f"Error details: {str(e)}")
187
-
188
- st.session_state.messages.append({"role": "assistant", "content": response})
189
- else:
190
- st.warning("Please enter text to classify.")