StableAvatar / wan /dataset /talking_video_dataset_fantasy.py
YinmingHuang's picture
Add application file
cf2f35c
import math
import os
import random
import warnings
import librosa
import numpy as np
import torch
from PIL import Image
import cv2
from einops import rearrange
import torchvision.transforms.functional as TF
from torch.utils.data.dataset import Dataset
import torch.nn.functional as F
def get_random_mask(shape, image_start_only=False):
f, c, h, w = shape
mask = torch.zeros((f, 1, h, w), dtype=torch.uint8)
if not image_start_only:
if f != 1:
mask_index = np.random.choice([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], p=[0.05, 0.2, 0.2, 0.2, 0.05, 0.05, 0.05, 0.1, 0.05, 0.05])
else:
mask_index = np.random.choice([0, 1], p = [0.2, 0.8])
if mask_index == 0:
center_x = torch.randint(0, w, (1,)).item()
center_y = torch.randint(0, h, (1,)).item()
block_size_x = torch.randint(w // 4, w // 4 * 3, (1,)).item() # 方块的宽度范围
block_size_y = torch.randint(h // 4, h // 4 * 3, (1,)).item() # 方块的高度范围
start_x = max(center_x - block_size_x // 2, 0)
end_x = min(center_x + block_size_x // 2, w)
start_y = max(center_y - block_size_y // 2, 0)
end_y = min(center_y + block_size_y // 2, h)
mask[:, :, start_y:end_y, start_x:end_x] = 1
elif mask_index == 1:
mask[:, :, :, :] = 1
elif mask_index == 2:
mask_frame_index = np.random.randint(1, 5)
mask[mask_frame_index:, :, :, :] = 1
elif mask_index == 3:
mask_frame_index = np.random.randint(1, 5)
mask[mask_frame_index:-mask_frame_index, :, :, :] = 1
elif mask_index == 4:
center_x = torch.randint(0, w, (1,)).item()
center_y = torch.randint(0, h, (1,)).item()
block_size_x = torch.randint(w // 4, w // 4 * 3, (1,)).item() # 方块的宽度范围
block_size_y = torch.randint(h // 4, h // 4 * 3, (1,)).item() # 方块的高度范围
start_x = max(center_x - block_size_x // 2, 0)
end_x = min(center_x + block_size_x // 2, w)
start_y = max(center_y - block_size_y // 2, 0)
end_y = min(center_y + block_size_y // 2, h)
mask_frame_before = np.random.randint(0, f // 2)
mask_frame_after = np.random.randint(f // 2, f)
mask[mask_frame_before:mask_frame_after, :, start_y:end_y, start_x:end_x] = 1
elif mask_index == 5:
mask = torch.randint(0, 2, (f, 1, h, w), dtype=torch.uint8)
elif mask_index == 6:
num_frames_to_mask = random.randint(1, max(f // 2, 1))
frames_to_mask = random.sample(range(f), num_frames_to_mask)
for i in frames_to_mask:
block_height = random.randint(1, h // 4)
block_width = random.randint(1, w // 4)
top_left_y = random.randint(0, h - block_height)
top_left_x = random.randint(0, w - block_width)
mask[i, 0, top_left_y:top_left_y + block_height, top_left_x:top_left_x + block_width] = 1
elif mask_index == 7:
center_x = torch.randint(0, w, (1,)).item()
center_y = torch.randint(0, h, (1,)).item()
a = torch.randint(min(w, h) // 8, min(w, h) // 4, (1,)).item() # 长半轴
b = torch.randint(min(h, w) // 8, min(h, w) // 4, (1,)).item() # 短半轴
for i in range(h):
for j in range(w):
if ((i - center_y) ** 2) / (b ** 2) + ((j - center_x) ** 2) / (a ** 2) < 1:
mask[:, :, i, j] = 1
elif mask_index == 8:
center_x = torch.randint(0, w, (1,)).item()
center_y = torch.randint(0, h, (1,)).item()
radius = torch.randint(min(h, w) // 8, min(h, w) // 4, (1,)).item()
for i in range(h):
for j in range(w):
if (i - center_y) ** 2 + (j - center_x) ** 2 < radius ** 2:
mask[:, :, i, j] = 1
elif mask_index == 9:
for idx in range(f):
if np.random.rand() > 0.5:
mask[idx, :, :, :] = 1
else:
raise ValueError(f"The mask_index {mask_index} is not define")
else:
if f != 1:
mask[1:, :, :, :] = 1
else:
mask[:, :, :, :] = 1
return mask
class LargeScaleTalkingFantasyVideos(Dataset):
def __init__(self, txt_path, width, height, n_sample_frames, sample_frame_rate, only_last_features=False, vocal_encoder=None, audio_encoder=None, vocal_sample_rate=16000, audio_sample_rate=24000, enable_inpaint=True, audio_margin=2, vae_stride=None, patch_size=None, wav2vec_processor=None, wav2vec=None):
self.txt_path = txt_path
self.width = width
self.height = height
self.n_sample_frames = n_sample_frames
self.sample_frame_rate = sample_frame_rate
self.only_last_features = only_last_features
self.vocal_encoder = vocal_encoder
self.audio_encoder = audio_encoder
self.vocal_sample_rate = vocal_sample_rate
self.audio_sample_rate = audio_sample_rate
self.enable_inpaint = enable_inpaint
self.wav2vec_processor = wav2vec_processor
self.audio_margin = audio_margin
self.vae_stride = vae_stride
self.patch_size = patch_size
self.max_area = height * width
self.aspect_ratio = height / width
self.video_files = self._read_txt_file_images()
self.lat_h = round(
np.sqrt(self.max_area * self.aspect_ratio) // self.vae_stride[1] //
self.patch_size[1] * self.patch_size[1])
self.lat_w = round(
np.sqrt(self.max_area / self.aspect_ratio) // self.vae_stride[2] //
self.patch_size[2] * self.patch_size[2])
def _read_txt_file_images(self):
with open(self.txt_path, 'r') as file:
lines = file.readlines()
video_files = []
for line in lines:
video_file = line.strip()
video_files.append(video_file)
return video_files
def __len__(self):
return len(self.video_files)
def frame_count(self, frames_path):
files = os.listdir(frames_path)
png_files = [file for file in files if file.endswith('.png') or file.endswith('.jpg')]
png_files_count = len(png_files)
return png_files_count
def find_frames_list(self, frames_path):
files = os.listdir(frames_path)
image_files = [file for file in files if file.endswith('.png') or file.endswith('.jpg')]
if image_files[0].startswith('frame_'):
image_files.sort(key=lambda x: int(x.split('_')[1].split('.')[0]))
else:
image_files.sort(key=lambda x: int(x.split('.')[0]))
return image_files
def __getitem__(self, idx):
warnings.filterwarnings('ignore', category=DeprecationWarning)
warnings.filterwarnings('ignore', category=FutureWarning)
video_path = os.path.join(self.video_files[idx], "sub_clip.mp4")
cap = cv2.VideoCapture(video_path)
fps = cap.get(cv2.CAP_PROP_FPS)
try:
is_0_fps = 2 / fps
except Exception as e:
print(f"The fps of {video_path} is 0 !!!")
vocal_audio_path = os.path.join(self.video_files[idx], "audio.wav")
vocal_duration = librosa.get_duration(filename=vocal_audio_path)
frames_path = os.path.join(self.video_files[idx], "images")
total_frame_number = self.frame_count(frames_path)
fps = total_frame_number / vocal_duration
print(f"The calculated fps of {video_path} is {fps} !!!")
# idx = random.randint(0, len(self.video_files) - 1)
# video_path = os.path.join(self.video_files[idx], "sub_clip.mp4")
# cap = cv2.VideoCapture(video_path)
# fps = cap.get(cv2.CAP_PROP_FPS)
frames_path = os.path.join(self.video_files[idx], "images")
face_masks_path = os.path.join(self.video_files[idx], "face_masks")
lip_masks_path = os.path.join(self.video_files[idx], "lip_masks")
raw_audio_path = os.path.join(self.video_files[idx], "audio.wav")
# vocal_audio_path = os.path.join(self.video_files[idx], "vocal.wav")
vocal_audio_path = os.path.join(self.video_files[idx], "audio.wav")
video_length = self.frame_count(frames_path)
frames_list = self.find_frames_list(frames_path)
clip_length = min(video_length, (self.n_sample_frames - 1) * self.sample_frame_rate + 1)
start_idx = random.randint(0, video_length - clip_length)
batch_index = np.linspace(
start_idx, start_idx + clip_length - 1, self.n_sample_frames, dtype=int
).tolist()
all_indices = list(range(0, video_length))
reference_frame_idx = random.choice(all_indices)
tgt_pil_image_list = []
tgt_face_masks_list = []
tgt_lip_masks_list = []
# reference_frame_path = os.path.join(frames_path, frames_list[reference_frame_idx])
reference_frame_path = os.path.join(frames_path, frames_list[start_idx])
reference_pil_image = Image.open(reference_frame_path).convert('RGB')
reference_pil_image = reference_pil_image.resize((self.width, self.height))
reference_pil_image = torch.from_numpy(np.array(reference_pil_image)).float()
reference_pil_image = reference_pil_image / 127.5 - 1
for index in batch_index:
tgt_img_path = os.path.join(frames_path, frames_list[index])
# file_name = os.path.splitext(os.path.basename(tgt_img_path))[0]
file_name = os.path.basename(tgt_img_path)
face_mask_path = os.path.join(face_masks_path, file_name)
lip_mask_path = os.path.join(lip_masks_path, file_name)
try:
tgt_img_pil = Image.open(tgt_img_path).convert('RGB')
except Exception as e:
print(f"Fail loading the image: {tgt_img_path}")
try:
tgt_lip_mask = Image.open(lip_mask_path)
# tgt_lip_mask = Image.open(lip_mask_path).convert('RGB')
tgt_lip_mask = tgt_lip_mask.resize((self.width, self.height))
tgt_lip_mask = torch.from_numpy(np.array(tgt_lip_mask)).float()
# tgt_lip_mask = tgt_lip_mask / 127.5 - 1
tgt_lip_mask = tgt_lip_mask / 255
except Exception as e:
print(f"Fail loading the lip masks: {lip_mask_path}")
tgt_lip_mask = torch.ones(self.height, self.width)
# tgt_lip_mask = torch.ones(self.height, self.width, 3)
tgt_lip_masks_list.append(tgt_lip_mask)
try:
tgt_face_mask = Image.open(face_mask_path)
# tgt_face_mask = Image.open(face_mask_path).convert('RGB')
tgt_face_mask = tgt_face_mask.resize((self.width, self.height))
tgt_face_mask = torch.from_numpy(np.array(tgt_face_mask)).float()
tgt_face_mask = tgt_face_mask / 255
# tgt_face_mask = tgt_face_mask / 127.5 - 1
except Exception as e:
print(f"Fail loading the face masks: {face_mask_path}")
tgt_face_mask = torch.ones(self.height, self.width)
# tgt_face_mask = torch.ones(self.height, self.width, 3)
tgt_face_masks_list.append(tgt_face_mask)
tgt_img_pil = tgt_img_pil.resize((self.width, self.height))
tgt_img_tensor = torch.from_numpy(np.array(tgt_img_pil)).float()
tgt_img_normalized = tgt_img_tensor / 127.5 - 1
tgt_pil_image_list.append(tgt_img_normalized)
sr = 16000
vocal_input, sample_rate = librosa.load(vocal_audio_path, sr=sr)
vocal_duration = librosa.get_duration(filename=vocal_audio_path)
start_time = batch_index[0] / fps
end_time = (clip_length / fps) + start_time
start_sample = int(start_time * sr)
end_sample = int(end_time * sr)
try:
vocal_segment = vocal_input[start_sample:end_sample]
except:
print(f"The current vocal segment is too short: {vocal_audio_path}, [{batch_index[0]}, {batch_index[-1]}], fps={fps}, clip_length={clip_length}, vocal_duration={vocal_duration}], [{start_time}, {end_time}]")
vocal_segment = vocal_input[start_sample:]
vocal_input_values = self.wav2vec_processor(
vocal_segment, sampling_rate=sample_rate, return_tensors="pt"
).input_values
tgt_pil_image_list = torch.stack(tgt_pil_image_list, dim=0)
tgt_pil_image_list = rearrange(tgt_pil_image_list, "f h w c -> f c h w")
reference_pil_image = rearrange(reference_pil_image, "h w c -> c h w")
tgt_face_masks_list = torch.stack(tgt_face_masks_list, dim=0)
tgt_face_masks_list = torch.unsqueeze(tgt_face_masks_list, dim=-1)
tgt_face_masks_list = rearrange(tgt_face_masks_list, "f h w c -> c f h w")
tgt_lip_masks_list = torch.stack(tgt_lip_masks_list, dim=0)
tgt_lip_masks_list = torch.unsqueeze(tgt_lip_masks_list, dim=-1)
tgt_lip_masks_list = rearrange(tgt_lip_masks_list, "f h w c -> c f h w")
clip_pixel_values = reference_pil_image.permute(1, 2, 0).contiguous()
clip_pixel_values = (clip_pixel_values * 0.5 + 0.5) * 255
cos_similarities = []
stride = 8
for i in range(0, tgt_pil_image_list.size()[0] - stride, stride):
frame1 = tgt_pil_image_list[i]
frame2 = tgt_pil_image_list[i + stride]
frame1_flat = frame1.contiguous().view(-1)
frame2_flat = frame2.contiguous().view(-1)
cos_sim = F.cosine_similarity(frame1_flat, frame2_flat, dim=0)
cos_sim = (cos_sim + 1) / 2
cos_similarities.append(cos_sim.item())
overall_cos_sim = F.cosine_similarity(tgt_pil_image_list[0].contiguous().view(-1), tgt_pil_image_list[-1].contiguous().view(-1), dim=0)
overall_cos_sim = (overall_cos_sim + 1) / 2
cos_similarities.append(overall_cos_sim.item())
motion_id = (1.0 - sum(cos_similarities) / len(cos_similarities)) * 100
if "singing" in self.video_files[idx]:
text_prompt = "The protagonist is singing"
elif "speech" in self.video_files[idx]:
text_prompt = "The protagonist is talking"
elif "dancing" in self.video_files[idx]:
text_prompt = "The protagonist is simultaneously dancing and singing"
else:
text_prompt = ""
print(1 / 0)
sample = dict(
pixel_values=tgt_pil_image_list,
reference_image=reference_pil_image,
clip_pixel_values=clip_pixel_values,
tgt_face_masks=tgt_face_masks_list,
vocal_input_values=vocal_input_values,
text_prompt=text_prompt,
motion_id=motion_id,
tgt_lip_masks=tgt_lip_masks_list,
audio_path=raw_audio_path,
)
if self.enable_inpaint:
pixel_value_masks = get_random_mask(tgt_pil_image_list.size(), image_start_only=True)
masked_pixel_values = tgt_pil_image_list * (1-pixel_value_masks)
sample["masked_pixel_values"] = masked_pixel_values
sample["pixel_value_masks"] = pixel_value_masks
return sample