Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import torch.nn as nn | |
def sinusoidal_embedding_1d(dim, position): | |
sinusoid = torch.outer(position.type(torch.float64), torch.pow(10000, -torch.arange(dim//2, dtype=torch.float64, device=position.device).div(dim//2))) | |
x = torch.cat([torch.cos(sinusoid), torch.sin(sinusoid)], dim=1) | |
return x.to(position.dtype) | |
class WanMotionControllerModel(torch.nn.Module): | |
def __init__(self, freq_dim=256, dim=1536): | |
super().__init__() | |
self.freq_dim = freq_dim | |
self.linear = nn.Sequential( | |
nn.Linear(freq_dim, dim), | |
nn.SiLU(), | |
nn.Linear(dim, dim), | |
nn.SiLU(), | |
nn.Linear(dim, dim * 6), | |
) | |
self.init_weight() | |
def forward(self, motion_bucket_id): | |
emb = sinusoidal_embedding_1d(self.freq_dim, motion_bucket_id * 10) | |
emb = self.linear(emb) | |
return emb | |
def init_weight(self): | |
state_dict = self.linear[-1].state_dict() | |
state_dict = {i: state_dict[i] * 0 for i in state_dict} | |
self.linear[-1].load_state_dict(state_dict) | |
if __name__ == "__main__": | |
dim = 1536 | |
motion_controller = WanMotionControllerModel() | |
motion_bucket_id = 100.0 | |
motion_bucket_id = torch.Tensor((motion_bucket_id,)).to(dtype=torch.float32, device='cpu') | |
out = motion_controller(motion_bucket_id).unflatten(1, (6, dim)) | |
print(out.size()) |