File size: 20,071 Bytes
d9c23d1 b5faafa fc07371 d9c23d1 fc07371 d9c23d1 fc07371 b5faafa d9c23d1 664b67c b5faafa bfdb8e9 a16bb01 bfdb8e9 a16bb01 bfdb8e9 8e78869 d9c23d1 fc07371 d9c23d1 fc07371 d9c23d1 fc07371 d9c23d1 b5faafa d9c23d1 fc07371 b5faafa d9c23d1 b5faafa d9c23d1 bfdb8e9 d9c23d1 fc07371 d9c23d1 fc07371 b7d2d3d b5faafa b7d2d3d d9c23d1 b5faafa fc07371 dfe572b bfdb8e9 a16bb01 bfdb8e9 8e78869 bfdb8e9 8e78869 fc07371 d9c23d1 fc07371 d9c23d1 664b67c d9c23d1 fc07371 d9c23d1 3681af9 3fba19d d9c23d1 fc07371 d9c23d1 fc07371 d9c23d1 3fba19d b5faafa 3fba19d b5faafa 3fba19d d9c23d1 3fba19d d9c23d1 fc07371 3fba19d b5faafa 3fba19d fc07371 d9c23d1 fc07371 d9c23d1 b7d2d3d fc07371 d9c23d1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 |
import os
from dotenv import load_dotenv
from langgraph.graph import START, StateGraph, MessagesState, END
from langgraph.prebuilt import tools_condition, ToolNode
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_groq import ChatGroq
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.document_loaders import WikipediaLoader, ArxivLoader
from langchain_core.messages import SystemMessage, HumanMessage, AIMessage
from langchain_core.tools import tool
from langchain_groq import ChatGroq
from supabase import create_client
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_community.vectorstores import SupabaseVectorStore
from langchain_openai import ChatOpenAI
from langchain_core.documents import Document
import json
import pdfplumber
import pandas as pd
from transformers import BlipProcessor, BlipForConditionalGeneration
from PIL import Image
import torch
import matplotlib.pyplot as plt
import cmath
# from code_interpreter import CodeInterpreter
import uuid
import tempfile
import requests
from urllib.parse import urlparse
from typing import Optional
import io
import contextlib
import base64
import subprocess
import sqlite3
import traceback
load_dotenv()
# ------------------- TOOL DEFINITIONS -------------------
@tool
def multiply(a: int, b: int) -> int:
"""Multiply two numbers."""
return a * b
@tool
def add(a: int, b: int) -> int:
"""Add two numbers."""
return a + b
@tool
def subtract(a: int, b: int) -> int:
"""Subtract b from a."""
return a - b
@tool
def divide(a: int, b: int) -> float:
"""Divide a by b. Raise error if b is zero."""
if b == 0:
raise ValueError("Cannot divide by zero.")
return a / b
@tool
def modulus(a: int, b: int) -> int:
"""Get remainder of a divided by b."""
return a % b
@tool
def square_root(a: float) -> float | complex:
"""
Get the square root of a number.
Args:
a (float): the number to get the square root of
"""
if a >= 0:
return a**0.5
return cmath.sqrt(a)
@tool
def power(a: float, b: float) -> float:
"""
Get the power of two numbers.
Args:
a (float): the first number
b (float): the second number
"""
return a**b
@tool
def wiki_search(query: str) -> str:
"""Search Wikipedia for a query (max 2 results)."""
docs = WikipediaLoader(query=query, load_max_docs=2).load()
return "\n\n".join([doc.page_content for doc in docs])
@tool
def web_search(query: str) -> str:
"""Search the web using Tavily (max 3 results)."""
results = TavilySearchResults(max_results=3).invoke(query)
texts = [doc.get("content", "") or doc.get("text", "") for doc in results if isinstance(doc, dict)]
return "\n\n".join(texts)
@tool
def arvix_search(query: str) -> str:
"""Search Arxiv for academic papers (max 3 results, truncated to 1000 characters each)."""
docs = ArxivLoader(query=query, load_max_docs=3).load()
return "\n\n".join([doc.page_content[:1000] for doc in docs])
@tool
def read_excel_file(path: str) -> str:
"""Read an Excel file and return the first few rows of each sheet as text."""
import pandas as pd
try:
xls = pd.ExcelFile(path)
content = ""
for sheet in xls.sheet_names:
df = xls.parse(sheet)
content += f"Sheet: {sheet}\n"
content += df.head(5).to_string(index=False) + "\n\n"
return content.strip()
except Exception as e:
return f"Error reading Excel file: {str(e)}"
@tool
def extract_text_from_pdf(path: str) -> str:
"""Extract text from a PDF file given its local path."""
try:
text = ""
with pdfplumber.open(path) as pdf:
for page in pdf.pages[:5]: # ιε5ι‘΅οΌιΏε
θΏε€§
page_text = page.extract_text()
if page_text:
text += page_text + "\n\n"
return text.strip() if text else "No text extracted from PDF."
except Exception as e:
return f"Error reading PDF: {str(e)}"
# εε§ε樑εοΌι¦ζ¬‘ε θ½½ε―θ½η¨ζ
’οΌ
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
@tool
def blip_image_caption(image_path: str) -> str:
"""Generate a description for an image using BLIP."""
try:
image = Image.open(image_path).convert("RGB")
inputs = processor(image, return_tensors="pt")
with torch.no_grad():
out = model.generate(**inputs)
caption = processor.decode(out[0], skip_special_tokens=True)
return caption
except Exception as e:
return f"Failed to process image with BLIP: {str(e)}"
# @tool
# def execute_code_multilang(code: str, language: str = "python") -> str:
# """Execute code in multiple languages (Python, Bash, SQL, C, Java) and return results.
# Args:
# code (str): The source code to execute.
# language (str): The language of the code. Supported: "python", "bash", "sql", "c", "java".
# Returns:
# A string summarizing the execution results (stdout, stderr, errors, plots, dataframes if any).
# """
# supported_languages = ["python", "bash", "sql", "c", "java"]
# language = language.lower()
# interpreter_instance = CodeInterpreter()
# if language not in supported_languages:
# return f"β Unsupported language: {language}. Supported languages are: {', '.join(supported_languages)}"
# result = interpreter_instance.execute_code(code, language=language)
# response = []
# if result["status"] == "success":
# response.append(f"β
Code executed successfully in **{language.upper()}**")
# if result.get("stdout"):
# response.append(
# "\n**Standard Output:**\n```\n" + result["stdout"].strip() + "\n```"
# )
# if result.get("stderr"):
# response.append(
# "\n**Standard Error (if any):**\n```\n"
# + result["stderr"].strip()
# + "\n```"
# )
# if result.get("result") is not None:
# response.append(
# "\n**Execution Result:**\n```\n"
# + str(result["result"]).strip()
# + "\n```"
# )
# if result.get("dataframes"):
# for df_info in result["dataframes"]:
# response.append(
# f"\n**DataFrame `{df_info['name']}` (Shape: {df_info['shape']})**"
# )
# df_preview = pd.DataFrame(df_info["head"])
# response.append("First 5 rows:\n```\n" + str(df_preview) + "\n```")
# if result.get("plots"):
# response.append(
# f"\n**Generated {len(result['plots'])} plot(s)** (Image data returned separately)"
# )
# else:
# response.append(f"β Code execution failed in **{language.upper()}**")
# if result.get("stderr"):
# response.append(
# "\n**Error Log:**\n```\n" + result["stderr"].strip() + "\n```"
# )
# return "\n".join(response)
@tool
def save_and_read_file(content: str, filename: Optional[str] = None) -> str:
"""
Save content to a file and return the path.
Args:
content (str): the content to save to the file
filename (str, optional): the name of the file. If not provided, a random name file will be created.
"""
temp_dir = tempfile.gettempdir()
if filename is None:
temp_file = tempfile.NamedTemporaryFile(delete=False, dir=temp_dir)
filepath = temp_file.name
else:
filepath = os.path.join(temp_dir, filename)
with open(filepath, "w") as f:
f.write(content)
return f"File saved to {filepath}. You can read this file to process its contents."
@tool
def download_file_from_url(url: str, filename: Optional[str] = None) -> str:
"""
Download a file from a URL and save it to a temporary location.
Args:
url (str): the URL of the file to download.
filename (str, optional): the name of the file. If not provided, a random name file will be created.
"""
try:
# Parse URL to get filename if not provided
if not filename:
path = urlparse(url).path
filename = os.path.basename(path)
if not filename:
filename = f"downloaded_{uuid.uuid4().hex[:8]}"
# Create temporary file
temp_dir = tempfile.gettempdir()
filepath = os.path.join(temp_dir, filename)
# Download the file
response = requests.get(url, stream=True)
response.raise_for_status()
# Save the file
with open(filepath, "wb") as f:
for chunk in response.iter_content(chunk_size=8192):
f.write(chunk)
return f"File downloaded to {filepath}. You can read this file to process its contents."
except Exception as e:
return f"Error downloading file: {str(e)}"
@tool
def analyze_csv_file(file_path: str, query: str) -> str:
"""
Analyze a CSV file using pandas and answer a question about it.
Args:
file_path (str): the path to the CSV file.
query (str): Question about the data
"""
try:
# Read the CSV file
df = pd.read_csv(file_path)
# Run various analyses based on the query
result = f"CSV file loaded with {len(df)} rows and {len(df.columns)} columns.\n"
result += f"Columns: {', '.join(df.columns)}\n\n"
# Add summary statistics
result += "Summary statistics:\n"
result += str(df.describe())
return result
except Exception as e:
return f"Error analyzing CSV file: {str(e)}"
def execute_code_multilang(code: str, language: str = "python") -> str:
"""
Execute code in Python, Bash, SQL, C, or Java and return formatted results.
Args:
code (str): Source code.
language (str): Language of the code. One of: 'python', 'bash', 'sql', 'c', 'java'.
Returns:
str: Human-readable execution result.
"""
language = language.lower()
exec_id = str(uuid.uuid4())
result = {
"stdout": "",
"stderr": "",
"status": "error",
"plots": [],
"dataframes": [],
}
try:
if language == "python":
plt.switch_backend("Agg")
stdout_buffer = io.StringIO()
stderr_buffer = io.StringIO()
globals_dict = {"pd": pd, "plt": plt, "Image": Image}
with contextlib.redirect_stdout(stdout_buffer), contextlib.redirect_stderr(stderr_buffer):
exec(code, globals_dict)
# Save plots
if plt.get_fignums():
for i, fig_num in enumerate(plt.get_fignums()):
fig = plt.figure(fig_num)
img_path = os.path.join(tempfile.gettempdir(), f"{exec_id}_plot_{i}.png")
fig.savefig(img_path)
with open(img_path, "rb") as f:
img_data = base64.b64encode(f.read()).decode()
result["plots"].append(img_data)
# Check for dataframes
for var_name, var_val in globals_dict.items():
if isinstance(var_val, pd.DataFrame):
result["dataframes"].append((var_name, var_val.head().to_string()))
result["stdout"] = stdout_buffer.getvalue()
result["stderr"] = stderr_buffer.getvalue()
result["status"] = "success"
elif language == "bash":
completed = subprocess.run(code, shell=True, capture_output=True, text=True, timeout=30)
result["stdout"] = completed.stdout
result["stderr"] = completed.stderr
result["status"] = "success" if completed.returncode == 0 else "error"
elif language == "sql":
conn = sqlite3.connect(":memory:")
cur = conn.cursor()
cur.execute(code)
if code.strip().lower().startswith("select"):
cols = [desc[0] for desc in cur.description]
rows = cur.fetchall()
df = pd.DataFrame(rows, columns=cols)
result["dataframes"].append(("query_result", df.head().to_string()))
conn.commit()
conn.close()
result["status"] = "success"
result["stdout"] = "SQL executed successfully."
elif language == "c":
with tempfile.TemporaryDirectory() as tmp:
src = os.path.join(tmp, "main.c")
bin_path = os.path.join(tmp, "main")
with open(src, "w") as f:
f.write(code)
comp = subprocess.run(["gcc", src, "-o", bin_path], capture_output=True, text=True)
if comp.returncode != 0:
result["stderr"] = comp.stderr
else:
run = subprocess.run([bin_path], capture_output=True, text=True, timeout=30)
result["stdout"] = run.stdout
result["stderr"] = run.stderr
result["status"] = "success" if run.returncode == 0 else "error"
elif language == "java":
with tempfile.TemporaryDirectory() as tmp:
src = os.path.join(tmp, "Main.java")
with open(src, "w") as f:
f.write(code)
comp = subprocess.run(["javac", src], capture_output=True, text=True)
if comp.returncode != 0:
result["stderr"] = comp.stderr
else:
run = subprocess.run(["java", "-cp", tmp, "Main"], capture_output=True, text=True, timeout=30)
result["stdout"] = run.stdout
result["stderr"] = run.stderr
result["status"] = "success" if run.returncode == 0 else "error"
else:
return f"β Unsupported language: {language}."
except Exception as e:
result["stderr"] = traceback.format_exc()
# Format response
summary = []
if result["status"] == "success":
summary.append(f"β
Code executed successfully in **{language.upper()}**")
if result["stdout"]:
summary.append(f"\n**Output:**\n```\n{result['stdout'].strip()}\n```")
if result["stderr"]:
summary.append(f"\n**Warnings/Errors:**\n```\n{result['stderr'].strip()}\n```")
for name, df in result["dataframes"]:
summary.append(f"\n**DataFrame `{name}` Preview:**\n```\n{df}\n```")
if result["plots"]:
summary.append(f"\nπ {len(result['plots'])} plot(s) generated (base64-encoded).")
else:
summary.append(f"β Execution failed for **{language.upper()}**")
if result["stderr"]:
summary.append(f"\n**Error:**\n```\n{result['stderr'].strip()}\n```")
return "\n".join(summary)
tools = [multiply, add, subtract, divide, modulus,
wiki_search, web_search, arvix_search, read_excel_file, extract_text_from_pdf,
blip_image_caption, save_and_read_file, download_file_from_url, analyze_csv_file,
execute_code_multilang]
# ------------------- SYSTEM PROMPT -------------------
system_prompt_path = "system_prompt.txt"
if os.path.exists(system_prompt_path):
with open(system_prompt_path, "r", encoding="utf-8") as f:
system_prompt = f.read()
else:
system_prompt = (
"You are an intelligent AI agent who can solve math, science, factual, and research-based problems. "
"You can use tools like Wikipedia, Web search, or Arxiv when needed. Always give precise and helpful answers."
)
sys_msg = SystemMessage(content=system_prompt)
# ------------------- GRAPH CONSTRUCTION -------------------
def build_graph(provider: str = "groq"):
if provider == "google":
llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0)
elif provider == "groq":
groq_key = os.getenv("GROQ_API_KEY")
if not groq_key:
raise ValueError("GROQ_API_KEY is not set.")
llm = ChatGroq(model="qwen-qwq-32b", temperature=0, api_key=groq_key)
elif provider == "huggingface":
llm = ChatHuggingFace(
llm=HuggingFaceEndpoint(
url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf",
temperature=0
)
)
elif provider == "openai":
openai_key = os.getenv("OPENAI_API_KEY")
if not openai_key:
raise ValueError("OPENAI_API_KEY is not set.")
llm = ChatOpenAI(model="gpt-3.5-turbo", temperature=0, api_key=openai_key)
else:
raise ValueError("Invalid provider")
llm_with_tools = llm.bind_tools(tools)
def assistant(state: MessagesState):
return {"messages": [sys_msg] + [llm_with_tools.invoke(state["messages"])]}
SUPABASE_URL = os.getenv("SUPABASE_URL")
SUPABASE_KEY = os.getenv("SUPABASE_SERVICE_KEY")
supabase = create_client(SUPABASE_URL, SUPABASE_KEY)
embedding_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
vectorstore = SupabaseVectorStore(
client=supabase,
embedding=embedding_model,
table_name="QA_db"
)
retriever = vectorstore.as_retriever(search_kwargs={"k": 1})
# β
ζΏζ’ similarity_search_by_vector_with_relevance_scores ζΉζ³οΌη΄ζ₯θ°η¨ supabase.rpc
original_fn = vectorstore.similarity_search_by_vector_with_relevance_scores
# β
θ¦η vectorstore ηζΉζ³
def patched_fn(embedding, k=4, filter=None, **kwargs):
response = supabase.rpc(
"match_documents",
{
"query_embedding": embedding,
"match_count": k
}
).execute()
documents = []
for r in response.data:
metadata = r["metadata"]
if isinstance(metadata, str):
try:
metadata = json.loads(metadata)
except Exception:
metadata = {}
doc = Document(
page_content=r["content"],
metadata=metadata
)
documents.append((doc, r["similarity"]))
return documents
# β
θ¦η vectorstore ηζΉζ³
vectorstore.similarity_search_by_vector_with_relevance_scores = patched_fn
def qa_retriever_node(state: MessagesState):
user_question = state["messages"][-1].content
docs = retriever.invoke(user_question)
if docs:
return {
"messages": state["messages"] + [AIMessage(content=docs[0].page_content)],
"__condition__": "complete"
}
return {"messages": state["messages"], "__condition__": "default"}
builder = StateGraph(MessagesState)
builder.add_node("retriever", qa_retriever_node)
builder.add_node("assistant", assistant)
builder.add_node("tools", ToolNode(tools))
builder.add_edge(START, "retriever")
builder.add_conditional_edges("retriever", {
"default": lambda x: "assistant",
"complete": lambda x: END,
})
builder.add_conditional_edges("assistant", tools_condition)
builder.add_edge("tools", "assistant")
return builder.compile()
# ------------------- LOCAL TEST -------------------
if __name__ == "__main__":
question = "When was a picture of St. Thomas Aquinas first added to the Wikipedia page on the Principle of double effect?"
graph = build_graph(provider="openai")
messages = graph.invoke({"messages": [HumanMessage(content=question)]})
print("=== AI Agent Response ===")
for m in messages["messages"]:
m.pretty_print()
|