|
import os |
|
import gradio as gr |
|
import requests |
|
import pandas as pd |
|
|
|
from agent import build_graph |
|
from langchain_core.messages import HumanMessage |
|
|
|
import re |
|
|
|
def extract_answer(text: str) -> str: |
|
""" |
|
Clean and extract the final answer from agent output. |
|
Removes prefixes like 'FINAL ANSWER:', trims punctuation, |
|
and normalizes separators. |
|
""" |
|
|
|
match = re.search(r"(final\s*answer|answer\s*is)[::]?\s*(.+)", text, re.IGNORECASE) |
|
answer = match.group(2) if match else text |
|
|
|
|
|
answer = answer.strip().lstrip(":").strip() |
|
answer = answer.rstrip('.').strip() |
|
|
|
|
|
if ',' in answer: |
|
answer = ",".join(part.strip() for part in answer.split(',')) |
|
if ';' in answer: |
|
answer = "; ".join(part.strip() for part in answer.split(';')) |
|
|
|
return answer |
|
|
|
|
|
|
|
|
|
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" |
|
|
|
|
|
class BasicAgent: |
|
def __init__(self, provider: str = "openai"): |
|
print(f"Initializing LangGraph Agent with provider: {provider}") |
|
self.graph = build_graph(provider=provider) |
|
|
|
def __call__(self, question: str) -> str: |
|
print(f"Running LangGraph Agent on question: {question[:50]}...") |
|
try: |
|
messages = [HumanMessage(content=question)] |
|
result = self.graph.invoke({"messages": messages}) |
|
outputs = result["messages"] |
|
for m in reversed(outputs): |
|
if m.type == "ai": |
|
raw_answer = m.content |
|
clean = extract_answer(raw_answer) |
|
print(f"Extracted clean answer: {clean}") |
|
return clean |
|
return "" |
|
except Exception as e: |
|
print(f"LangGraph Agent error: {e}") |
|
return f"Error: {str(e)}" |
|
|
|
|
|
def run_and_submit_all(username: str): |
|
if not username: |
|
return "❌ Please enter your Hugging Face username.", None |
|
|
|
space_id = os.getenv("SPACE_ID") |
|
api_url = DEFAULT_API_URL |
|
questions_url = f"{api_url}/questions" |
|
submit_url = f"{api_url}/submit" |
|
|
|
try: |
|
agent = BasicAgent() |
|
except Exception as e: |
|
return f"Error initializing agent: {e}", None |
|
|
|
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" if space_id else "N/A" |
|
|
|
print(f"Fetching questions from: {questions_url}") |
|
try: |
|
response = requests.get(questions_url, timeout=15) |
|
response.raise_for_status() |
|
questions_data = response.json() |
|
if not questions_data: |
|
return "Fetched questions list is empty or invalid format.", None |
|
print(f"Fetched {len(questions_data)} questions.") |
|
except requests.exceptions.RequestException as e: |
|
return f"Error fetching questions: {e}", None |
|
|
|
results_log = [] |
|
answers_payload = [] |
|
print(f"Running agent on {len(questions_data)} questions...") |
|
for item in questions_data: |
|
task_id = item.get("task_id") |
|
question_text = item.get("question") |
|
if not task_id or question_text is None: |
|
continue |
|
try: |
|
submitted_answer = agent(question_text) |
|
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) |
|
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer}) |
|
except Exception as e: |
|
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"}) |
|
|
|
if not answers_payload: |
|
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) |
|
|
|
submission_data = { |
|
"username": username.strip(), |
|
"agent_code": agent_code, |
|
"answers": answers_payload |
|
} |
|
|
|
print(f"Submitting {len(answers_payload)} answers to: {submit_url}") |
|
try: |
|
response = requests.post(submit_url, json=submission_data, timeout=60) |
|
response.raise_for_status() |
|
result_data = response.json() |
|
final_status = ( |
|
f"✅ Submission Successful!\n" |
|
f"User: {result_data.get('username')}\n" |
|
f"Overall Score: {result_data.get('score', 'N/A')}% " |
|
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" |
|
f"Message: {result_data.get('message', 'No message received.')}" |
|
) |
|
results_df = pd.DataFrame(results_log) |
|
return final_status, results_df |
|
except Exception as e: |
|
return f"❌ Submission Failed: {e}", pd.DataFrame(results_log) |
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("# Basic Agent Evaluation Runner") |
|
gr.Markdown( |
|
""" |
|
**Instructions:** |
|
1. Please enter your Hugging Face username below manually. |
|
2. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see your score. |
|
--- |
|
""" |
|
) |
|
|
|
username_box = gr.Textbox(label="Your Hugging Face Username (for submission)", placeholder="e.g. johndoe") |
|
|
|
run_button = gr.Button("Run Evaluation & Submit All Answers") |
|
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) |
|
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) |
|
|
|
run_button.click( |
|
fn=run_and_submit_all, |
|
inputs=[username_box], |
|
outputs=[status_output, results_table] |
|
) |
|
|
|
if __name__ == "__main__": |
|
print("\n" + "-"*30 + " App Starting " + "-"*30) |
|
space_host_startup = os.getenv("SPACE_HOST") |
|
space_id_startup = os.getenv("SPACE_ID") |
|
|
|
if space_host_startup: |
|
print(f"✅ SPACE_HOST found: {space_host_startup}") |
|
print(f" Runtime URL should be: https://{space_host_startup}.hf.space") |
|
else: |
|
print("ℹ️ SPACE_HOST not found (running locally?).") |
|
|
|
if space_id_startup: |
|
print(f"✅ SPACE_ID found: {space_id_startup}") |
|
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}") |
|
else: |
|
print("ℹ️ SPACE_ID not found. Repo URL cannot be determined.") |
|
|
|
print("-"*(60 + len(" App Starting ")) + "\n") |
|
print("Launching Gradio Interface for Basic Agent Evaluation...") |
|
demo.launch(debug=True, share=False) |
|
|