|
import openai, gradio as gr, json, plotly.graph_objects as go |
|
from pathlib import Path |
|
|
|
SYSTEM_PROMPT = """You are a multimodal assistant. Return one of the following response types: |
|
- Plain text (just a natural reply) |
|
- JSON object: {"type":"image","prompt":"<dalle-3 prompt>"} |
|
- JSON object: {"type":"chart","title":"<title>","data":[{"x":[...],"y":[...],"label":"..."}]} |
|
- JSON object: {"type":"table","headers":["A","B"],"rows":[[1,2],[3,4]]} |
|
- JSON object: {"type":"audio","text":"Text to speak"} |
|
|
|
Respond in plain text unless image/chart/table/audio is clearly required. |
|
""" |
|
|
|
def build_messages(history, user_msg): |
|
messages = [{"role": "system", "content": SYSTEM_PROMPT}] |
|
for u, a in history: |
|
messages.append({"role": "user", "content": u}) |
|
messages.append({"role": "assistant", "content": a}) |
|
messages.append({"role": "user", "content": user_msg}) |
|
return messages |
|
|
|
def multimodal_chat(api_key, user_msg, history): |
|
if not api_key: |
|
raise gr.Error("π Please provide your OpenAI API key.") |
|
openai.api_key = api_key |
|
messages = build_messages(history, user_msg) |
|
response = openai.chat.completions.create(model="gpt-4o", messages=messages) |
|
content = response.choices[0].message.content.strip() |
|
|
|
img_url, fig, table_html, audio_url = None, None, None, None |
|
try: |
|
parsed = json.loads(content) |
|
t = parsed.get("type") |
|
if t == "image": |
|
img = openai.images.generate(model="dall-e-3", prompt=parsed["prompt"], size="1024x1024", n=1) |
|
img_url = img.data[0].url |
|
history.append([user_msg, f""]) |
|
elif t == "chart": |
|
fig = go.Figure() |
|
for s in parsed["data"]: |
|
fig.add_trace(go.Scatter(x=s["x"], y=s["y"], mode="lines+markers", name=s.get("label", ""))) |
|
fig.update_layout(title=parsed["title"]) |
|
history.append([user_msg, parsed["title"]]) |
|
elif t == "table": |
|
headers = parsed["headers"] |
|
rows = parsed["rows"] |
|
table_html = f"<table><thead><tr>{''.join(f'<th>{h}</th>' for h in headers)}</tr></thead><tbody>" |
|
table_html += ''.join(f"<tr>{''.join(f'<td>{c}</td>' for c in row)}</tr>" for row in rows) |
|
table_html += "</tbody></table>" |
|
history.append([user_msg, "Table generated below"]) |
|
elif t == "audio": |
|
audio = openai.audio.speech.create(model="tts-1", voice="alloy", input=parsed["text"]) |
|
path = "/tmp/audio.mp3" |
|
with open(path, "wb") as f: f.write(audio.read()) |
|
audio_url = path |
|
history.append([user_msg, parsed["text"]]) |
|
else: |
|
history.append([user_msg, content]) |
|
except Exception: |
|
history.append([user_msg, content]) |
|
return history, img_url, fig, table_html, audio_url |
|
|
|
with gr.Blocks(css="style.css") as demo: |
|
gr.Markdown("π€ **Multimodal Assistant** β Text, Images, Charts, Tables, Audio", elem_id="zen-header") |
|
api_key = gr.Textbox(label="OpenAI API Key", type="password", placeholder="sk-...") |
|
chatbot = gr.Chatbot() |
|
with gr.Row(): |
|
user_msg = gr.Textbox(label="Your message", scale=4) |
|
send_btn = gr.Button("Send", variant="primary") |
|
img_out = gr.Image() |
|
chart_out = gr.Plot() |
|
table_out = gr.HTML() |
|
audio_out = gr.Audio(type="filepath") |
|
|
|
def respond(api_key, user_msg, chat_history): |
|
chat_history, img_url, fig, table, audio = multimodal_chat(api_key, user_msg, chat_history) |
|
return chat_history, gr.update(value=img_url), gr.update(value=fig), gr.update(value=table), gr.update(value=audio) |
|
|
|
send_btn.click(respond, [api_key, user_msg, chatbot], [chatbot, img_out, chart_out, table_out, audio_out]) |
|
user_msg.submit(respond, [api_key, user_msg, chatbot], [chatbot, img_out, chart_out, table_out, audio_out]) |
|
|
|
if __name__ == "__main__": |
|
demo.queue().launch() |