Alex / app.py
ZENLLC's picture
Create app.py
11e45ec verified
import openai, gradio as gr, json, plotly.graph_objects as go
from pathlib import Path
SYSTEM_PROMPT = """You are a multimodal assistant. Return one of the following response types:
- Plain text (just a natural reply)
- JSON object: {"type":"image","prompt":"<dalle-3 prompt>"}
- JSON object: {"type":"chart","title":"<title>","data":[{"x":[...],"y":[...],"label":"..."}]}
- JSON object: {"type":"table","headers":["A","B"],"rows":[[1,2],[3,4]]}
- JSON object: {"type":"audio","text":"Text to speak"}
Respond in plain text unless image/chart/table/audio is clearly required.
"""
def build_messages(history, user_msg):
messages = [{"role": "system", "content": SYSTEM_PROMPT}]
for u, a in history:
messages.append({"role": "user", "content": u})
messages.append({"role": "assistant", "content": a})
messages.append({"role": "user", "content": user_msg})
return messages
def multimodal_chat(api_key, user_msg, history):
if not api_key:
raise gr.Error("πŸ”‘ Please provide your OpenAI API key.")
openai.api_key = api_key
messages = build_messages(history, user_msg)
response = openai.chat.completions.create(model="gpt-4o", messages=messages)
content = response.choices[0].message.content.strip()
img_url, fig, table_html, audio_url = None, None, None, None
try:
parsed = json.loads(content)
t = parsed.get("type")
if t == "image":
img = openai.images.generate(model="dall-e-3", prompt=parsed["prompt"], size="1024x1024", n=1)
img_url = img.data[0].url
history.append([user_msg, f"![generated image]({img_url})"])
elif t == "chart":
fig = go.Figure()
for s in parsed["data"]:
fig.add_trace(go.Scatter(x=s["x"], y=s["y"], mode="lines+markers", name=s.get("label", "")))
fig.update_layout(title=parsed["title"])
history.append([user_msg, parsed["title"]])
elif t == "table":
headers = parsed["headers"]
rows = parsed["rows"]
table_html = f"<table><thead><tr>{''.join(f'<th>{h}</th>' for h in headers)}</tr></thead><tbody>"
table_html += ''.join(f"<tr>{''.join(f'<td>{c}</td>' for c in row)}</tr>" for row in rows)
table_html += "</tbody></table>"
history.append([user_msg, "Table generated below"])
elif t == "audio":
audio = openai.audio.speech.create(model="tts-1", voice="alloy", input=parsed["text"])
path = "/tmp/audio.mp3"
with open(path, "wb") as f: f.write(audio.read())
audio_url = path
history.append([user_msg, parsed["text"]])
else:
history.append([user_msg, content])
except Exception:
history.append([user_msg, content])
return history, img_url, fig, table_html, audio_url
with gr.Blocks(css="style.css") as demo:
gr.Markdown("πŸ€– **Multimodal Assistant** – Text, Images, Charts, Tables, Audio", elem_id="zen-header")
api_key = gr.Textbox(label="OpenAI API Key", type="password", placeholder="sk-...")
chatbot = gr.Chatbot()
with gr.Row():
user_msg = gr.Textbox(label="Your message", scale=4)
send_btn = gr.Button("Send", variant="primary")
img_out = gr.Image()
chart_out = gr.Plot()
table_out = gr.HTML()
audio_out = gr.Audio(type="filepath")
def respond(api_key, user_msg, chat_history):
chat_history, img_url, fig, table, audio = multimodal_chat(api_key, user_msg, chat_history)
return chat_history, gr.update(value=img_url), gr.update(value=fig), gr.update(value=table), gr.update(value=audio)
send_btn.click(respond, [api_key, user_msg, chatbot], [chatbot, img_out, chart_out, table_out, audio_out])
user_msg.submit(respond, [api_key, user_msg, chatbot], [chatbot, img_out, chart_out, table_out, audio_out])
if __name__ == "__main__":
demo.queue().launch()