Spaces:
Running
on
Zero
Running
on
Zero
import math | |
import copy | |
import random | |
import torch | |
import numpy as np | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from safetensors.torch import save_file | |
from safetensors import safe_open | |
from torch.nn.parameter import Parameter | |
from depth_anything_v2_metric.depth_anything_v2.dpt import DepthAnythingV2 | |
class _LoRA_qkv(nn.Module): | |
"""In Sam it is implemented as | |
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) | |
B, N, C = x.shape | |
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4) | |
q, k, v = qkv.unbind(0) | |
""" | |
def __init__( | |
self, | |
qkv: nn.Module, | |
linear_a_q: nn.Module, | |
linear_b_q: nn.Module, | |
linear_a_v: nn.Module, | |
linear_b_v: nn.Module, | |
): | |
super().__init__() | |
self.qkv = qkv | |
self.linear_a_q = linear_a_q | |
self.linear_b_q = linear_b_q | |
self.linear_a_v = linear_a_v | |
self.linear_b_v = linear_b_v | |
self.dim = qkv.in_features | |
self.w_identity = torch.eye(qkv.in_features) | |
def forward(self, x): | |
qkv = self.qkv(x) # B,N,3*org_C | |
new_q = self.linear_b_q(self.linear_a_q(x)) | |
new_v = self.linear_b_v(self.linear_a_v(x)) | |
qkv[:, :, : self.dim] += new_q | |
qkv[:, :, -self.dim:] += new_v | |
return qkv | |
class LoRA(nn.Module): | |
def __init__(self, *args, **kwargs) -> None: | |
super().__init__(*args, **kwargs) | |
def save_fc_parameters(self, filename: str) -> None: | |
r"""Only safetensors is supported now. | |
pip install safetensor if you do not have one installed yet. | |
""" | |
assert filename.endswith(".safetensors") | |
_in = self.lora_vit.head.in_features | |
_out = self.lora_vit.head.out_features | |
fc_tensors = {f"fc_{_in}in_{_out}out": self.lora_vit.head.weight} | |
save_file(fc_tensors, filename) | |
def load_fc_parameters(self, filename: str) -> None: | |
r"""Only safetensors is supported now. | |
pip install safetensor if you do not have one installed yet. | |
""" | |
assert filename.endswith(".safetensors") | |
_in = self.lora_vit.head.in_features | |
_out = self.lora_vit.head.out_features | |
with safe_open(filename, framework="pt") as f: | |
saved_key = f"fc_{_in}in_{_out}out" | |
try: | |
saved_tensor = f.get_tensor(saved_key) | |
self.lora_vit.head.weight = Parameter(saved_tensor) | |
except ValueError: | |
print("this fc weight is not for this model") | |
def save_lora_parameters(self, filename: str) -> None: | |
r"""Only safetensors is supported now. | |
pip install safetensor if you do not have one installed yet. | |
save both lora and fc parameters. | |
""" | |
assert filename.endswith(".safetensors") | |
num_layer = len(self.w_As) # actually, it is half | |
a_tensors = {f"w_a_{i:03d}": self.w_As[i].weight for i in range(num_layer)} | |
b_tensors = {f"w_b_{i:03d}": self.w_Bs[i].weight for i in range(num_layer)} | |
_in = self.lora_vit.head.in_features | |
_out = self.lora_vit.head.out_features | |
fc_tensors = {f"fc_{_in}in_{_out}out": self.lora_vit.head.weight} | |
merged_dict = {**a_tensors, **b_tensors, **fc_tensors} | |
save_file(merged_dict, filename) | |
def load_lora_parameters(self, filename: str) -> None: | |
r"""Only safetensors is supported now. | |
pip install safetensor if you do not have one installed yet.\ | |
load both lora and fc parameters. | |
""" | |
assert filename.endswith(".safetensors") | |
with safe_open(filename, framework="pt") as f: | |
for i, w_A_linear in enumerate(self.w_As): | |
saved_key = f"w_a_{i:03d}" | |
saved_tensor = f.get_tensor(saved_key) | |
w_A_linear.weight = Parameter(saved_tensor) | |
for i, w_B_linear in enumerate(self.w_Bs): | |
saved_key = f"w_b_{i:03d}" | |
saved_tensor = f.get_tensor(saved_key) | |
w_B_linear.weight = Parameter(saved_tensor) | |
_in = self.lora_vit.head.in_features | |
_out = self.lora_vit.head.out_features | |
saved_key = f"fc_{_in}in_{_out}out" | |
try: | |
saved_tensor = f.get_tensor(saved_key) | |
self.lora_vit.head.weight = Parameter(saved_tensor) | |
except ValueError: | |
print("this fc weight is not for this model") | |
def reset_parameters(self) -> None: | |
for w_A in self.w_As: | |
nn.init.kaiming_uniform_(w_A.weight, a=math.sqrt(5)) | |
for w_B in self.w_Bs: | |
nn.init.zeros_(w_B.weight) | |
class LoRA_Depth_Anything_v2(LoRA): | |
"""Applies low-rank adaptation to a Depth Anything model's image encoder. | |
Args: | |
sam_model: a vision transformer model, see base_vit.py | |
r: rank of LoRA | |
num_classes: how many classes the model output, default to the vit model | |
lora_layer: which layer we apply LoRA. | |
Examples:: | |
>>> model = ViT('B_16_imagenet1k') | |
>>> lora_model = LoRA_ViT(model, r=4) | |
>>> preds = lora_model(img) | |
>>> print(preds.shape) | |
torch.Size([1, 1000]) | |
""" | |
def __init__(self, da_model: DepthAnythingV2, r: int, lora_layer=None): | |
super(LoRA_Depth_Anything_v2, self).__init__() | |
assert r > 0 | |
# base_vit_dim = sam_model.image_encoder.patch_embed.proj.out_channels | |
# dim = base_vit_dim | |
if lora_layer: | |
self.lora_layer = lora_layer | |
else: | |
self.lora_layer = list(range(len(da_model.pretrained.blocks))) | |
# create for storage, then we can init them or load weights | |
self.w_As = [] # These are linear layers | |
self.w_Bs = [] | |
# lets freeze first | |
for param in da_model.pretrained.parameters(): | |
param.requires_grad = False | |
# Here, we do the surgery | |
for t_layer_i, blk in enumerate(da_model.pretrained.blocks): | |
# If we only want few lora layer instead of all | |
if t_layer_i not in self.lora_layer: | |
continue | |
w_qkv_linear = blk.attn.qkv | |
self.dim = w_qkv_linear.in_features | |
w_a_linear_q = nn.Linear(self.dim, r, bias=False) | |
w_b_linear_q = nn.Linear(r, self.dim, bias=False) | |
w_a_linear_v = nn.Linear(self.dim, r, bias=False) | |
w_b_linear_v = nn.Linear(r, self.dim, bias=False) | |
self.w_As.append(w_a_linear_q) | |
self.w_Bs.append(w_b_linear_q) | |
self.w_As.append(w_a_linear_v) | |
self.w_Bs.append(w_b_linear_v) | |
blk.attn.qkv = _LoRA_qkv( | |
w_qkv_linear, | |
w_a_linear_q, | |
w_b_linear_q, | |
w_a_linear_v, | |
w_b_linear_v, | |
) | |
self.reset_parameters() | |
self.lora_vit = da_model |