DiT4SR / app.py
Men1scus
fix: Improve error handling in process_sr function to raise error with message during inference failure
3ff2374
import gradio as gr
import spaces
from typing import List
import argparse
import sys
import os
import glob
sys.path.append(os.getcwd())
from llava.llm_agent import LLavaAgent
from PIL import Image
# from CKPT_PTH import LLAVA_MODEL_PATH
import re
import numpy as np
from PIL import Image
import torch
from pytorch_lightning import seed_everything
from diffusers import (
AutoencoderKL,
FlowMatchEulerDiscreteScheduler,
)
from transformers import CLIPTokenizer, PretrainedConfig, T5TokenizerFast
from pipelines.pipeline_dit4sr import StableDiffusion3ControlNetPipeline
from utils.wavelet_color_fix import adain_color_fix
from torchvision import transforms
from model_dit4sr.transformer_sd3 import SD3Transformer2DModel
parser = argparse.ArgumentParser()
parser.add_argument("--pretrained_model_name_or_path", type=str, default='stabilityai/stable-diffusion-3.5-medium')
parser.add_argument("--load_both_models", type=str, default='True') # whether to load both dit4sr_q and dit4sr_f models
parser.add_argument("--transformer_model_name_or_path", type=str, default='acceptee/DiT4SR')
parser.add_argument("--mixed_precision", type=str, default="fp16") # no/fp16/bf16
parser.add_argument("--process_size", type=int, default=512)
parser.add_argument("--vae_decoder_tiled_size", type=int, default=224) # latent size, for 24G
parser.add_argument("--vae_encoder_tiled_size", type=int, default=1024) # image size, for 13G
parser.add_argument("--latent_tiled_size", type=int, default=64)
parser.add_argument("--latent_tiled_overlap", type=int, default=16)
parser.add_argument("--start_point", type=str, choices=['lr', 'noise'], default='noise') # LR Embedding Strategy, choose 'lr latent + 999 steps noise' as diffusion start point.
parser.add_argument(
"--revision",
type=str,
default=None,
required=False,
help="Revision of pretrained model identifier from huggingface.co/models.",
)
parser.add_argument(
"--variant",
type=str,
default=None,
help="Variant of the model files of the pretrained model identifier from huggingface.co/models, 'e.g.' fp16",
)
args = parser.parse_args()
# Copied from dreambooth sd3 example
def import_model_class_from_model_name_or_path(
pretrained_model_name_or_path: str, revision: str, subfolder: str = "text_encoder"
):
text_encoder_config = PretrainedConfig.from_pretrained(
pretrained_model_name_or_path, subfolder=subfolder, revision=revision
)
model_class = text_encoder_config.architectures[0]
if model_class == "CLIPTextModelWithProjection":
from transformers import CLIPTextModelWithProjection
return CLIPTextModelWithProjection
elif model_class == "T5EncoderModel":
from transformers import T5EncoderModel
return T5EncoderModel
else:
raise ValueError(f"{model_class} is not supported.")
# Copied from dreambooth sd3 example
def load_text_encoders(class_one, class_two, class_three, args):
text_encoder_one = class_one.from_pretrained(
args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision, variant=args.variant
)
text_encoder_two = class_two.from_pretrained(
args.pretrained_model_name_or_path, subfolder="text_encoder_2", revision=args.revision, variant=args.variant
)
text_encoder_three = class_three.from_pretrained(
args.pretrained_model_name_or_path, subfolder="text_encoder_3", revision=args.revision, variant=args.variant
)
return text_encoder_one, text_encoder_two, text_encoder_three
def load_dit4sr_q_pipeline(args, device):
# Load scheduler, tokenizer and models.
scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(
args.pretrained_model_name_or_path, subfolder="scheduler"
)
vae = AutoencoderKL.from_pretrained(
args.pretrained_model_name_or_path,
subfolder="vae",
)
transformer = SD3Transformer2DModel.from_pretrained(
args.transformer_model_name_or_path, subfolder="dit4sr_q/transformer"
)
# controlnet = SD3ControlNetModel.from_pretrained(args.controlnet_model_name_or_path, subfolder='controlnet')
# Load the tokenizer
tokenizer_one = CLIPTokenizer.from_pretrained(
args.pretrained_model_name_or_path,
subfolder="tokenizer",
revision=args.revision,
)
tokenizer_two = CLIPTokenizer.from_pretrained(
args.pretrained_model_name_or_path,
subfolder="tokenizer_2",
revision=args.revision,
)
tokenizer_three = T5TokenizerFast.from_pretrained(
args.pretrained_model_name_or_path,
subfolder="tokenizer_3",
revision=args.revision,
)
# import correct text encoder class
text_encoder_cls_one = import_model_class_from_model_name_or_path(
args.pretrained_model_name_or_path, args.revision
)
text_encoder_cls_two = import_model_class_from_model_name_or_path(
args.pretrained_model_name_or_path, args.revision, subfolder="text_encoder_2"
)
text_encoder_cls_three = import_model_class_from_model_name_or_path(
args.pretrained_model_name_or_path, args.revision, subfolder="text_encoder_3"
)
text_encoder_one, text_encoder_two, text_encoder_three = load_text_encoders(
text_encoder_cls_one, text_encoder_cls_two, text_encoder_cls_three, args
)
# Freeze vae and text_encoder
vae.requires_grad_(False)
text_encoder_one.requires_grad_(False)
text_encoder_two.requires_grad_(False)
text_encoder_three.requires_grad_(False)
transformer.requires_grad_(False)
# Get the validation pipeline
validation_pipeline = StableDiffusion3ControlNetPipeline(
vae=vae, text_encoder=text_encoder_one, text_encoder_2=text_encoder_two, text_encoder_3=text_encoder_three,
tokenizer=tokenizer_one, tokenizer_2=tokenizer_two, tokenizer_3=tokenizer_three,
transformer=transformer, scheduler=scheduler,
)
# For mixed precision training we cast the text_encoder and vae weights to half-precision
# as these models are only used for inference, keeping weights in full precision is not required.
weight_dtype = torch.float32
if args.mixed_precision == "fp16":
weight_dtype = torch.float16
elif args.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
# Move text_encode and vae to gpu and cast to weight_dtype
text_encoder_one.to(device, dtype=weight_dtype)
text_encoder_two.to(device, dtype=weight_dtype)
text_encoder_three.to(device, dtype=weight_dtype)
vae.to(device, dtype=weight_dtype)
transformer.to(device, dtype=weight_dtype)
return validation_pipeline
def load_dit4sr_f_pipeline(args, device):
# Load scheduler, tokenizer and models.
scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(
args.pretrained_model_name_or_path, subfolder="scheduler"
)
vae = AutoencoderKL.from_pretrained(
args.pretrained_model_name_or_path,
subfolder="vae",
)
transformer = SD3Transformer2DModel.from_pretrained(
args.transformer_model_name_or_path, subfolder="dit4sr_f/transformer"
)
# controlnet = SD3ControlNetModel.from_pretrained(args.controlnet_model_name_or_path, subfolder='controlnet')
# Load the tokenizer
tokenizer_one = CLIPTokenizer.from_pretrained(
args.pretrained_model_name_or_path,
subfolder="tokenizer",
revision=args.revision,
)
tokenizer_two = CLIPTokenizer.from_pretrained(
args.pretrained_model_name_or_path,
subfolder="tokenizer_2",
revision=args.revision,
)
tokenizer_three = T5TokenizerFast.from_pretrained(
args.pretrained_model_name_or_path,
subfolder="tokenizer_3",
revision=args.revision,
)
# import correct text encoder class
text_encoder_cls_one = import_model_class_from_model_name_or_path(
args.pretrained_model_name_or_path, args.revision
)
text_encoder_cls_two = import_model_class_from_model_name_or_path(
args.pretrained_model_name_or_path, args.revision, subfolder="text_encoder_2"
)
text_encoder_cls_three = import_model_class_from_model_name_or_path(
args.pretrained_model_name_or_path, args.revision, subfolder="text_encoder_3"
)
text_encoder_one, text_encoder_two, text_encoder_three = load_text_encoders(
text_encoder_cls_one, text_encoder_cls_two, text_encoder_cls_three, args
)
# Freeze vae and text_encoder
vae.requires_grad_(False)
text_encoder_one.requires_grad_(False)
text_encoder_two.requires_grad_(False)
text_encoder_three.requires_grad_(False)
transformer.requires_grad_(False)
# Get the validation pipeline
validation_pipeline = StableDiffusion3ControlNetPipeline(
vae=vae, text_encoder=text_encoder_one, text_encoder_2=text_encoder_two, text_encoder_3=text_encoder_three,
tokenizer=tokenizer_one, tokenizer_2=tokenizer_two, tokenizer_3=tokenizer_three,
transformer=transformer, scheduler=scheduler,
)
# For mixed precision training we cast the text_encoder and vae weights to half-precision
# as these models are only used for inference, keeping weights in full precision is not required.
weight_dtype = torch.float32
if args.mixed_precision == "fp16":
weight_dtype = torch.float16
elif args.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
# Move text_encode and vae to gpu and cast to weight_dtype
text_encoder_one.to(device, dtype=weight_dtype)
text_encoder_two.to(device, dtype=weight_dtype)
text_encoder_three.to(device, dtype=weight_dtype)
vae.to(device, dtype=weight_dtype)
transformer.to(device, dtype=weight_dtype)
return validation_pipeline
def remove_focus_sentences(text):
# 使用正则表达式按照 . ? ! 分割,并且保留分隔符本身
# re.split(pattern, string) 如果 pattern 中带有捕获组(),分隔符也会保留在结果列表中
prohibited_words = ['focus', 'focal', 'prominent', 'close-up', 'black and white', 'blur', 'depth', 'dense', 'locate', 'position']
parts = re.split(r'([.?!])', text)
filtered_sentences = []
i = 0
while i < len(parts):
# sentence 可能是句子主体,punctuation 是该句子结尾的标点
sentence = parts[i]
punctuation = parts[i+1] if (i+1 < len(parts)) else ''
# 组合为完整句子,避免漏掉结尾标点
full_sentence = sentence + punctuation
full_sentence_lower = full_sentence.lower()
skip = False
for word in prohibited_words:
if word.lower() in full_sentence_lower:
skip = True
break
# 如果该句子不包含任何禁用词,则保留
if not skip:
filtered_sentences.append(full_sentence)
# 跳过已经处理的句子和标点
i += 2
# 根据需要选择如何重新拼接;这里去掉多余空格并直接拼接
return "".join(filtered_sentences).strip()
# if torch.cuda.device_count() >= 2:
# LLaVA_device = 'cuda:0'
# dit4sr_device = 'cuda:1'
# elif torch.cuda.device_count() == 1:
# LLaVA_device = 'cuda:0'
# dit4sr_device = 'cuda:0'
# else:
# raise ValueError('Currently support CUDA only.')
LLaVA_device = 'cuda:0'
dit4sr_device = 'cuda:0'
llava_agent = LLavaAgent("liuhaotian/llava-v1.5-13b", LLaVA_device, load_8bit=True, load_4bit=False)
# Get the validation pipeline - prioritize dit4sr_f
pipeline_dit4sr_f = load_dit4sr_f_pipeline(args, dit4sr_device)
# Only load dit4sr_q if load_both_models is True
pipeline_dit4sr_q = None
if args.load_both_models == 'True':
pipeline_dit4sr_q = load_dit4sr_q_pipeline(args, dit4sr_device)
@spaces.GPU
@torch.no_grad()
def process_llava(
input_image):
llama_prompt = llava_agent.gen_image_caption([input_image])[0]
llama_prompt = remove_focus_sentences(llama_prompt)
return llama_prompt
@spaces.GPU
@torch.no_grad()
def process_sr(
input_image: Image.Image,
user_prompt: str,
positive_prompt: str,
negative_prompt: str,
num_inference_steps: int,
scale_factor: int,
cfg_scale: float,
seed: int,
model_choice: str,
) -> Image.Image:
process_size = 512
resize_preproc = transforms.Compose([
transforms.Resize(process_size, interpolation=transforms.InterpolationMode.BILINEAR),
])
if input_image.mode != 'RGB':
input_image = input_image.convert('RGB')
seed_everything(seed)
generator = torch.Generator(device=dit4sr_device)
generator.manual_seed(seed)
validation_prompt = f"{user_prompt} {positive_prompt}"
ori_width, ori_height = input_image.size
resize_flag = False
rscale = scale_factor
input_image = input_image.resize((int(input_image.size[0] * rscale), int(input_image.size[1] * rscale)))
if min(input_image.size) < process_size:
input_image = resize_preproc(input_image)
input_image = input_image.resize((input_image.size[0] // 8 * 8, input_image.size[1] // 8 * 8))
width, height = input_image.size
resize_flag = True #
# Choose pipeline based on model selection - prioritize dit4sr_f
if model_choice == "dit4sr_q" and pipeline_dit4sr_q is not None:
pipeline = pipeline_dit4sr_q
else:
pipeline = pipeline_dit4sr_f
weight_dtype = torch.float32
if args.mixed_precision == "fp16":
weight_dtype = torch.float16
elif args.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
try:
with torch.autocast(device_type='cuda', dtype=weight_dtype, enabled=(args.mixed_precision != "no")):
image = pipeline(
prompt=validation_prompt, control_image=input_image, num_inference_steps=num_inference_steps, generator=generator, height=height, width=width,
guidance_scale=cfg_scale, negative_prompt=negative_prompt, start_point=args.start_point, latent_tiled_size=args.latent_tiled_size, latent_tiled_overlap=args.latent_tiled_overlap,
args=args,
).images[0]
if True: # alpha<1.0:
image = adain_color_fix(image, input_image)
if resize_flag:
image = image.resize((ori_width * rscale, ori_height * rscale))
except Exception as e:
print(f"Error during inference: {e}")
image = Image.new(mode="RGB", size=(512, 512))
raise gr.Error(f"Error during inference: {e}", duration=None)
return image
Intro = \
"""
## DiT4SR: Taming Diffusion Transformer for Real-World Image Super-Resolution
[🕸️ Project Page](https://adam-duan.github.io/projects/dit4sr) • [📄 Paper](https://arxiv.org/abs/2503.23580) • [💻 Code](https://github.com/Adam-duan/DiT4SR) • [📦 Model](https://huggingface.co/acceptee/DiT4SR) • [📊 Dataset](https://huggingface.co/datasets/acceptee/NKUSR8K)
"""
# Generate prompt text based on model availability
if args.load_both_models == 'True':
Prompt = \
"""
First, select your preferred model (fidelity first or quality first). \\
Then, click \"Run LLAVA\" to generate an initial prompt based on the input image. \\
Modify the prompt for higher accuracy if needed. \\
Finally, click \"Run DiT4SR\" to generate the SR result." \
"""
else:
Prompt = \
"""
Click \"Run LLAVA\" to generate an initial prompt based on the input image. \\
Modify the prompt for higher accuracy if needed. \\
Finally, click \"Run DiT4SR\" to generate the SR result using fidelity first model." \
"""
exaple_images = sorted(glob.glob('examples/*.png'))
block = gr.Blocks().queue()
with block:
with gr.Row():
gr.Markdown(Intro)
with gr.Row():
with gr.Column():
input_image = gr.Image(type="pil")
user_prompt = gr.Textbox(label="User Prompt", value="")
# Only show model selection if load_both_models is True
if args.load_both_models == 'True':
model_choice = gr.Dropdown(
label="Model Selection",
choices=[("Quality First", "dit4sr_q"), ("Fidelity First", "dit4sr_f")],
value="dit4sr_f",
info="Choose between Quality First and Fidelity First models"
)
else:
# Hidden component with default value when only one model is available
model_choice = gr.Dropdown(
label="Model Selection",
choices=["dit4sr_f"],
value="dit4sr_f",
visible=False
)
with gr.Accordion("Options", open=False):
positive_prompt = gr.Textbox(label="Positive Prompt", value='Cinematic, perfect without deformations, ultra HD, '
'camera, detailed photo, realistic maximum, 32k, Color.')
negative_prompt = gr.Textbox(
label="Negative Prompt",
value='motion blur, noisy, dotted, pointed, deformed, lowres, chaotic'
'CG Style, 3D render, unreal engine, blurring, dirty, messy, '
'worst quality, low quality, watermark, signature, jpeg artifacts. '
)
cfg_scale = gr.Slider(label="Classifier Free Guidance Scale (Set a value larger than 1 to enable it!)", minimum=0.1, maximum=10.0, value=7.0, step=0.1)
num_inference_steps = gr.Slider(label="Inference Steps", minimum=10, maximum=100, value=20, step=1)
seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, value=0)
scale_factor = gr.Number(label="SR Scale", value=4)
gr.Examples(examples=exaple_images, inputs=[input_image])
with gr.Column():
result_gallery = gr.Image(label="Output", show_label=False, elem_id="gallery", type="pil", format="png")
with gr.Row():
run_llava_button = gr.Button(value="Run LLAVA")
run_sr_button = gr.Button(value="Run DiT4SR")
gr.Markdown(Prompt)
inputs = [
input_image,
user_prompt,
positive_prompt,
negative_prompt,
num_inference_steps,
scale_factor,
cfg_scale,
seed,
model_choice,
]
run_llava_button.click(fn=process_llava, inputs=[input_image], outputs=[user_prompt])
run_sr_button.click(fn=process_sr, inputs=inputs, outputs=[result_gallery])
block.launch()