DiT4SR / model_dit4sr /attention.py
acceptee's picture
Upload folder using huggingface_hub
b8d220c verified
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, Dict, List, Optional, Tuple
import torch
import torch.nn.functional as F
from torch import nn
import numpy as np
from diffusers.utils import deprecate, logging
from diffusers.utils.torch_utils import maybe_allow_in_graph
from diffusers.models.activations import GEGLU, GELU, ApproximateGELU, FP32SiLU, SwiGLU
from diffusers.models.attention_processor import Attention
from diffusers.models.embeddings import SinusoidalPositionalEmbedding
from diffusers.models.normalization import AdaLayerNorm, AdaLayerNormContinuous, AdaLayerNormZero, RMSNorm, SD35AdaLayerNormZeroX
def _chunked_feed_forward(ff: nn.Module, hidden_states: torch.Tensor, chunk_dim: int, chunk_size: int):
# "feed_forward_chunk_size" can be used to save memory
if hidden_states.shape[chunk_dim] % chunk_size != 0:
raise ValueError(
f"`hidden_states` dimension to be chunked: {hidden_states.shape[chunk_dim]} has to be divisible by chunk size: {chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`."
)
num_chunks = hidden_states.shape[chunk_dim] // chunk_size
ff_output = torch.cat(
[ff(hid_slice) for hid_slice in hidden_states.chunk(num_chunks, dim=chunk_dim)],
dim=chunk_dim,
)
return ff_output
class FeedForward(nn.Module):
r"""
A feed-forward layer.
Parameters:
dim (`int`): The number of channels in the input.
dim_out (`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`.
mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension.
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
final_dropout (`bool` *optional*, defaults to False): Apply a final dropout.
bias (`bool`, defaults to True): Whether to use a bias in the linear layer.
"""
def __init__(
self,
dim: int,
dim_out: Optional[int] = None,
mult: int = 4,
dropout: float = 0.0,
activation_fn: str = "geglu",
final_dropout: bool = False,
inner_dim=None,
bias: bool = True,
):
super().__init__()
if inner_dim is None:
inner_dim = int(dim * mult)
dim_out = dim_out if dim_out is not None else dim
if activation_fn == "gelu":
act_fn = GELU(dim, inner_dim, bias=bias)
if activation_fn == "gelu-approximate":
act_fn = GELU(dim, inner_dim, approximate="tanh", bias=bias)
elif activation_fn == "geglu":
act_fn = GEGLU(dim, inner_dim, bias=bias)
elif activation_fn == "geglu-approximate":
act_fn = ApproximateGELU(dim, inner_dim, bias=bias)
elif activation_fn == "swiglu":
act_fn = SwiGLU(dim, inner_dim, bias=bias)
self.net = nn.ModuleList([])
# project in
self.net.append(act_fn)
# project dropout
self.net.append(nn.Dropout(dropout))
# project out
self.net.append(nn.Linear(inner_dim, dim_out, bias=bias))
# FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout
if final_dropout:
self.net.append(nn.Dropout(dropout))
def forward(self, hidden_states: torch.Tensor, *args, **kwargs) -> torch.Tensor:
if len(args) > 0 or kwargs.get("scale", None) is not None:
deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`."
deprecate("scale", "1.0.0", deprecation_message)
for module in self.net:
hidden_states = module(hidden_states)
return hidden_states
class FeedForwardControl(nn.Module):
r"""
A feed-forward layer.
Parameters:
dim (`int`): The number of channels in the input.
dim_out (`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`.
mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension.
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
final_dropout (`bool` *optional*, defaults to False): Apply a final dropout.
bias (`bool`, defaults to True): Whether to use a bias in the linear layer.
"""
def __init__(
self,
dim: int,
dim_out: Optional[int] = None,
mult: int = 4,
dropout: float = 0.0,
activation_fn: str = "geglu",
final_dropout: bool = False,
inner_dim=None,
bias: bool = True,
):
super().__init__()
if inner_dim is None:
inner_dim = int(dim * mult)
dim_out = dim_out if dim_out is not None else dim
if activation_fn == "gelu":
act_fn = GELU(dim, inner_dim, bias=bias)
if activation_fn == "gelu-approximate":
act_fn = GELU(dim, inner_dim, approximate="tanh", bias=bias)
elif activation_fn == "geglu":
act_fn = GEGLU(dim, inner_dim, bias=bias)
elif activation_fn == "geglu-approximate":
act_fn = ApproximateGELU(dim, inner_dim, bias=bias)
elif activation_fn == "swiglu":
act_fn = SwiGLU(dim, inner_dim, bias=bias)
self.net = nn.ModuleList([])
# project in
self.net.append(act_fn)
# project dropout
self.net.append(nn.Dropout(dropout))
# project out
self.net.append(nn.Linear(inner_dim, dim_out, bias=bias))
self.control_conv = zero_module(nn.Conv2d(inner_dim, inner_dim, 3, stride=1, padding=1, groups=inner_dim))
# FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout
if final_dropout:
self.net.append(nn.Dropout(dropout))
def forward(self, hidden_states: torch.Tensor, *args, **kwargs) -> torch.Tensor:
if len(args) > 0 or kwargs.get("scale", None) is not None:
deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`."
deprecate("scale", "1.0.0", deprecation_message)
for i, module in enumerate(self.net):
hidden_states = module(hidden_states)
if i == 1:
hidden_states, hidden_states_control_org = hidden_states.chunk(2, dim=1)
B, N, C = hidden_states.shape
h = w = int(np.sqrt(N))
assert h * w == N
hidden_states_control = hidden_states_control_org.reshape(B, h, w, C).permute(0, 3, 1, 2)
hidden_states_control = self.control_conv(hidden_states_control)
hidden_states_control = hidden_states_control.reshape(B, C, N).permute(0, 2, 1)
hidden_states = hidden_states + 1.2 * hidden_states_control
hidden_states = torch.cat([hidden_states, hidden_states_control_org], dim=1)
return hidden_states
logger = logging.get_logger(__name__)
@maybe_allow_in_graph
class JointTransformerBlock(nn.Module):
r"""
A Transformer block following the MMDiT architecture, introduced in Stable Diffusion 3.
Reference: https://arxiv.org/abs/2403.03206
Parameters:
dim (`int`): The number of channels in the input and output.
num_attention_heads (`int`): The number of heads to use for multi-head attention.
attention_head_dim (`int`): The number of channels in each head.
context_pre_only (`bool`): Boolean to determine if we should add some blocks associated with the
processing of `context` conditions.
"""
def __init__(self, dim, num_attention_heads, attention_head_dim, context_pre_only=False, qk_norm: Optional[str] = None, use_dual_attention: bool = False):
super().__init__()
self.use_dual_attention = use_dual_attention
self.context_pre_only = context_pre_only
context_norm_type = "ada_norm_continous" if context_pre_only else "ada_norm_zero"
if use_dual_attention:
self.norm1 = SD35AdaLayerNormZeroX(dim)
else:
self.norm1 = AdaLayerNormZero(dim)
if context_norm_type == "ada_norm_continous":
self.norm1_context = AdaLayerNormContinuous(
dim, dim, elementwise_affine=False, eps=1e-6, bias=True, norm_type="layer_norm"
)
elif context_norm_type == "ada_norm_zero":
self.norm1_context = AdaLayerNormZero(dim)
else:
raise ValueError(
f"Unknown context_norm_type: {context_norm_type}, currently only support `ada_norm_continous`, `ada_norm_zero`"
)
if hasattr(F, "scaled_dot_product_attention"):
processor = JointAttnProcessor2_0()
else:
raise ValueError(
"The current PyTorch version does not support the `scaled_dot_product_attention` function."
)
self.attn = AttentionZero(
query_dim=dim,
cross_attention_dim=None,
added_kv_proj_dim=dim,
dim_head=attention_head_dim,
heads=num_attention_heads,
out_dim=dim,
context_pre_only=context_pre_only,
bias=True,
processor=processor,
qk_norm=qk_norm,
eps=1e-6,
)
if use_dual_attention:
self.attn2 = AttentionZero(
query_dim=dim,
cross_attention_dim=None,
added_kv_proj_dim=dim,
dim_head=attention_head_dim,
heads=num_attention_heads,
out_dim=dim,
context_pre_only=context_pre_only,
bias=True,
processor=processor,
qk_norm=qk_norm,
eps=1e-6,
)
else:
self.attn2 = None
self.norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
self.ff = FeedForwardControl(dim=dim, dim_out=dim, activation_fn="gelu-approximate")
if not context_pre_only:
self.norm2_context = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
self.ff_context = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")
else:
self.norm2_context = None
self.ff_context = None
# let chunk size default to None
self._chunk_size = None
self._chunk_dim = 0
# Copied from diffusers.models.attention.BasicTransformerBlock.set_chunk_feed_forward
def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int = 0):
# Sets chunk feed-forward
self._chunk_size = chunk_size
self._chunk_dim = dim
def forward(
self, hidden_states: torch.FloatTensor, encoder_hidden_states: torch.FloatTensor, temb: torch.FloatTensor
):
if self.use_dual_attention:
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp, norm_hidden_states2, gate_msa2 = self.norm1(
hidden_states, emb=temb
)
else:
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(hidden_states, emb=temb)
if self.context_pre_only:
norm_encoder_hidden_states = self.norm1_context(encoder_hidden_states, temb)
else:
norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = self.norm1_context(
encoder_hidden_states, emb=temb
)
# Attention.
attn_output, context_attn_output = self.attn(
hidden_states=norm_hidden_states, encoder_hidden_states=norm_encoder_hidden_states,
)
# Process attention outputs for the `hidden_states`.
attn_output = gate_msa.unsqueeze(1) * attn_output
hidden_states = hidden_states + attn_output
if self.use_dual_attention:
attn_output2 = self.attn2(hidden_states=norm_hidden_states2)
attn_output2 = gate_msa2.unsqueeze(1) * attn_output2
hidden_states = hidden_states + attn_output2
norm_hidden_states = self.norm2(hidden_states)
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
if self._chunk_size is not None:
# "feed_forward_chunk_size" can be used to save memory
ff_output = _chunked_feed_forward(self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size)
else:
ff_output = self.ff(norm_hidden_states)
ff_output = gate_mlp.unsqueeze(1) * ff_output
hidden_states = hidden_states + ff_output
# Process attention outputs for the `encoder_hidden_states`.
if self.context_pre_only:
encoder_hidden_states = None
else:
context_attn_output = c_gate_msa.unsqueeze(1) * context_attn_output
encoder_hidden_states = encoder_hidden_states + context_attn_output
norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states)
norm_encoder_hidden_states = norm_encoder_hidden_states * (1 + c_scale_mlp[:, None]) + c_shift_mlp[:, None]
if self._chunk_size is not None:
# "feed_forward_chunk_size" can be used to save memory
context_ff_output = _chunked_feed_forward(
self.ff_context, norm_encoder_hidden_states, self._chunk_dim, self._chunk_size
)
else:
context_ff_output = self.ff_context(norm_encoder_hidden_states)
encoder_hidden_states = encoder_hidden_states + c_gate_mlp.unsqueeze(1) * context_ff_output
return encoder_hidden_states, hidden_states
class AttentionZero(Attention):
def __init__(self,
query_dim,
cross_attention_dim,
added_kv_proj_dim,
dim_head,
heads,
out_dim,
context_pre_only,
bias,
processor,
qk_norm,
eps):
super(AttentionZero, self).__init__(
query_dim=query_dim,
cross_attention_dim=cross_attention_dim,
added_kv_proj_dim=added_kv_proj_dim,
dim_head=dim_head,
heads=heads,
out_dim=out_dim,
context_pre_only=context_pre_only,
bias=bias,
processor=processor,
qk_norm=qk_norm,
eps=1e-6,)
self.to_q_control = zero_module(nn.Linear(self.query_dim, self.inner_dim, bias=self.use_bias))
self.to_k_control = zero_module(nn.Linear(self.cross_attention_dim, self.inner_kv_dim, bias=self.use_bias))
self.to_v_control = zero_module(nn.Linear(self.cross_attention_dim, self.inner_kv_dim, bias=self.use_bias))
self.to_out_control = nn.Linear(self.inner_dim, self.out_dim, bias=True)
self.to_out_control.weight.data.copy_(self.to_out[0].weight.data)
self.to_out_control.bias.data.copy_(self.to_out[0].bias.data)
def zero_module(module):
for p in module.parameters():
nn.init.zeros_(p)
return module
class JointAttnProcessor2_0:
"""Attention processor used typically in processing the SD3-like self-attention projections."""
def __init__(self):
if not hasattr(F, "scaled_dot_product_attention"):
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
def __call__(
self,
attn: Attention,
hidden_states: torch.FloatTensor,
encoder_hidden_states: torch.FloatTensor = None,
attention_mask: Optional[torch.FloatTensor] = None,
*args,
**kwargs,
) -> torch.FloatTensor:
residual = hidden_states
batch_size = hidden_states.shape[0]
hidden_states, hidden_states_control = hidden_states.chunk(2, dim=1)
hidden_states_control_res = hidden_states_control
# `sample` projections.
query = attn.to_q(hidden_states)
key = attn.to_k(hidden_states)
value = attn.to_v(hidden_states)
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
# `control` projections.
query_control = attn.to_q_control(attn.to_q(hidden_states_control))
key_control = attn.to_k_control(attn.to_k(hidden_states_control))
value_control = attn.to_v_control(attn.to_v(hidden_states_control))
query_control = query_control.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key_control = key_control.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value_control = value_control.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
if attn.norm_q is not None:
query = attn.norm_q(query)
query_control = attn.norm_q(query_control)
if attn.norm_k is not None:
key = attn.norm_k(key)
key_control = attn.norm_k(key)
if encoder_hidden_states is not None:
# `context` projections.
encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states)
encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)
encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
if attn.norm_added_q is not None:
encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj)
if attn.norm_added_k is not None:
encoder_hidden_states_key_proj = attn.norm_added_k(encoder_hidden_states_key_proj)
# attention
query = torch.cat([query, query_control, encoder_hidden_states_query_proj], dim=2)
key = torch.cat([key, key_control, encoder_hidden_states_key_proj], dim=2)
value = torch.cat([value, value_control, encoder_hidden_states_value_proj], dim=2)
else :
query = torch.cat([query, query_control], dim=2)
key = torch.cat([key, key_control], dim=2)
value = torch.cat([value, value_control], dim=2)
hidden_states = F.scaled_dot_product_attention(query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False)
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
hidden_states = hidden_states.to(query.dtype)
if encoder_hidden_states is not None:
# Split the attention outputs.
hidden_states, encoder_hidden_states = (
hidden_states[:, : residual.shape[1]],
hidden_states[:, residual.shape[1] :],
)
if not attn.context_pre_only:
encoder_hidden_states = attn.to_add_out(encoder_hidden_states)
hidden_states, hidden_states_control = hidden_states.chunk(2, dim=1)
# TODO
hidden_states_control = hidden_states_control + hidden_states_control_res
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
hidden_states_control = attn.to_out_control(hidden_states_control)
hidden_states = torch.cat([hidden_states, hidden_states_control], dim=1)
if encoder_hidden_states is not None:
return hidden_states, encoder_hidden_states
else :
return hidden_states