Spaces:
Paused
Paused
import logging | |
import math | |
import os | |
from typing import Any, Dict, List, Optional, Tuple, Union | |
from diffusers.models.controlnet import ControlNetConditioningEmbedding | |
import torch | |
from torch import nn | |
import torch.nn.functional as F | |
import torch.utils.checkpoint | |
import transformers | |
from accelerate import Accelerator | |
from accelerate.logging import get_logger | |
from accelerate.utils import ProjectConfiguration, set_seed | |
from tqdm.auto import tqdm | |
from src.configs.stage2_config import args | |
import diffusers | |
from diffusers import ( | |
AutoencoderKL, | |
DDPMScheduler, | |
) | |
from diffusers.optimization import get_scheduler | |
from diffusers.utils import check_min_version, is_wandb_available | |
from src.dataset.stage2_dataset import InpaintDataset, InpaintCollate_fn | |
from transformers import CLIPVisionModelWithProjection | |
from transformers import Dinov2Model | |
from src.models.stage2_inpaint_unet_2d_condition import Stage2_InapintUNet2DConditionModel | |
# Will error if the minimal version of diffusers is not installed. Remove at your own risks. | |
check_min_version("0.18.0.dev0") | |
logger = get_logger(__name__) | |
class ImageProjModel_p(torch.nn.Module): | |
"""SD model with image prompt""" | |
def __init__(self, in_dim, hidden_dim, out_dim, dropout = 0.): | |
super().__init__() | |
self.net = nn.Sequential( | |
nn.Linear(in_dim, hidden_dim), | |
nn.GELU(), | |
nn.Dropout(dropout), | |
nn.LayerNorm(hidden_dim), | |
nn.Linear(hidden_dim, out_dim), | |
nn.Dropout(dropout) | |
) | |
def forward(self, x): | |
return self.net(x) | |
class ImageProjModel_g(torch.nn.Module): | |
"""SD model with image prompt""" | |
def __init__(self, in_dim, hidden_dim, out_dim, dropout = 0.): | |
super().__init__() | |
self.net = nn.Sequential( | |
nn.Linear(in_dim, hidden_dim), | |
nn.GELU(), | |
nn.Dropout(dropout), | |
nn.LayerNorm(hidden_dim), | |
nn.Linear(hidden_dim, out_dim), | |
nn.Dropout(dropout) | |
) | |
def forward(self, x): # b, 257,1280 | |
return self.net(x) | |
class SDModel(torch.nn.Module): | |
"""SD model with image prompt""" | |
def __init__(self, unet) -> None: | |
super().__init__() | |
self.image_proj_model_p = ImageProjModel_p(in_dim=1536, hidden_dim=768, out_dim=1024) | |
self.unet = unet | |
self.pose_proj = ControlNetConditioningEmbedding( | |
conditioning_embedding_channels=320, | |
block_out_channels=(16, 32, 96, 256), | |
conditioning_channels=3) | |
def forward(self, noisy_latents, timesteps, simg_f_p, timg_f_g, pose_f): | |
extra_image_embeddings_p = self.image_proj_model_p(simg_f_p) | |
extra_image_embeddings_g = timg_f_g | |
print(extra_image_embeddings_p.size()) | |
print(extra_image_embeddings_g.size()) | |
encoder_image_hidden_states = torch.cat([extra_image_embeddings_p ,extra_image_embeddings_g], dim=1) | |
pose_cond = self.pose_proj(pose_f) | |
pred_noise = self.unet(noisy_latents, timesteps, class_labels=timg_f_g, encoder_hidden_states=encoder_image_hidden_states,my_pose_cond=pose_cond).sample | |
return pred_noise | |
def load_training_checkpoint2(model, load_dir, tag=None, **kwargs): | |
"""Utility function for checkpointing model + optimizer dictionaries | |
The main purpose for this is to be able to resume training from that instant again | |
""" | |
""" | |
checkpoint_state_dict= torch.load(load_dir, map_location="cpu") | |
print(checkpoint_state_dict.keys()) | |
epoch = 0 | |
last_global_step = 0 | |
epoch = checkpoint_state_dict["epoch"] | |
last_global_step = checkpoint_state_dict["last_global_step"] | |
# TODO optimizer lr, and loss state | |
weight_dict = checkpoint_state_dict["module"] | |
new_weight_dict = {f"module.{key}": value for key, value in weight_dict.items()} | |
model.load_state_dict(new_weight_dict) | |
del checkpoint_state_dict | |
return model, epoch, last_global_step | |
""" | |
image_proj_model_p_dict = {} | |
pose_proj_dict = {} | |
unet_dict = {} | |
model_sd = torch.load(load_dir, map_location="cpu")["module"] | |
for k in model_sd.keys(): | |
if k.startswith("pose_proj"): | |
pose_proj_dict[k.replace("pose_proj.", "")] = model_sd[k] | |
elif k.startswith("image_proj_model_p"): | |
image_proj_model_p_dict[k.replace("image_proj_model_p.", "")] = model_sd[k] | |
elif k.startswith("unet"): | |
unet_dict[k.replace("unet.", "")] = model_sd[k] | |
else: | |
print(k) | |
model.pose_proj.load_state_dict(pose_proj_dict) | |
model.image_proj_model_p.load_state_dict(image_proj_model_p_dict) | |
model.unet.load_state_dict(unet_dict) | |
return model, 0, 0 | |
def load_training_checkpoint(model, load_dir, tag=None, **kwargs): | |
model_sd = torch.load(load_dir, map_location="cpu")["module"] | |
image_proj_model_dict = {} | |
pose_proj_dict = {} | |
unet_dict = {} | |
for k in model_sd.keys(): | |
if k.startswith("pose_proj"): | |
pose_proj_dict[k.replace("pose_proj.", "")] = model_sd[k] | |
elif k.startswith("image_proj_model"): | |
image_proj_model_dict[k.replace("image_proj_model.", "")] = model_sd[k] | |
elif k.startswith("unet"): | |
unet_dict[k.replace("unet.", "")] = model_sd[k] | |
else: | |
print(k) | |
model.pose_proj.load_state_dict(pose_proj_dict) | |
model.image_proj_model_p.load_state_dict(image_proj_model_dict) | |
model.unet.load_state_dict(unet_dict) | |
return model, 0, 0 | |
def checkpoint_model(checkpoint_folder, ckpt_id, model, epoch, last_global_step, **kwargs): | |
"""Utility function for checkpointing model + optimizer dictionaries | |
The main purpose for this is to be able to resume training from that instant again | |
""" | |
checkpoint_state_dict = { | |
"epoch": epoch, | |
"last_global_step": last_global_step, | |
} | |
# Add extra kwargs too | |
checkpoint_state_dict.update(kwargs) | |
success = model.save_checkpoint(checkpoint_folder, ckpt_id, checkpoint_state_dict) | |
status_msg = f"checkpointing: checkpoint_folder={checkpoint_folder}, ckpt_id={ckpt_id}" | |
if success: | |
logging.info(f"Success {status_msg}") | |
else: | |
logging.warning(f"Failure {status_msg}") | |
return | |
def main(): | |
logging_dir = 'outputs/logging' | |
accelerator = Accelerator( | |
log_with=args.report_to, | |
project_dir=logging_dir, | |
mixed_precision=args.mixed_precision, | |
gradient_accumulation_steps=args.gradient_accumulation_steps | |
) | |
# Make one log on every process with the configuration for debugging. | |
logging.basicConfig( | |
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", | |
datefmt="%m/%d/%Y %H:%M:%S", | |
level=logging.INFO, ) | |
logger.info(accelerator.state, main_process_only=False) | |
if accelerator.is_local_main_process: | |
transformers.utils.logging.set_verbosity_warning() | |
diffusers.utils.logging.set_verbosity_info() | |
else: | |
transformers.utils.logging.set_verbosity_error() | |
diffusers.utils.logging.set_verbosity_error() | |
# If passed along, set the training seed now. | |
set_seed(42) | |
# Handle the repository creation | |
if accelerator.is_main_process: | |
os.makedirs('outputs', exist_ok=True) | |
# Load scheduler | |
noise_scheduler = DDPMScheduler.from_pretrained("stabilityai/stable-diffusion-2-1-base", subfolder="scheduler") | |
# Load model | |
image_encoder_p = Dinov2Model.from_pretrained('facebook/dinov2-giant') | |
image_encoder_g = CLIPVisionModelWithProjection.from_pretrained('laion/CLIP-ViT-H-14-laion2B-s32B-b79K')#("openai/clip-vit-base-patch32") | |
vae = AutoencoderKL.from_pretrained("stabilityai/stable-diffusion-2-1-base", subfolder="vae") | |
unet = Stage2_InapintUNet2DConditionModel.from_pretrained("stabilityai/stable-diffusion-2-1-base", torch_dtype=torch.float16,subfolder="unet",in_channels=9, low_cpu_mem_usage=False, ignore_mismatched_sizes=True) | |
""" | |
unet = Stage2_InapintUNet2DConditionModel.from_pretrained("stabilityai/stable-diffusion-2-1-base", subfolder="unet", | |
in_channels=9, class_embed_type="projection" ,projection_class_embeddings_input_dim=1024, | |
low_cpu_mem_usage=False, ignore_mismatched_sizes=True) | |
""" | |
image_encoder_p.requires_grad_(False) | |
image_encoder_g.requires_grad_(False) | |
vae.requires_grad_(False) | |
sd_model = SDModel(unet=unet) | |
sd_model.train() | |
if args.gradient_checkpointing: | |
sd_model.enable_gradient_checkpointing() | |
# Enable TF32 for faster training on Ampere GPUs, | |
# cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices | |
if args.allow_tf32: | |
torch.backends.cuda.matmul.allow_tf32 = True | |
learning_rate = 1e-4 | |
train_batch_size = 1 | |
# Optimizer creation | |
params_to_optimize = sd_model.parameters() | |
optimizer = torch.optim.AdamW( | |
params_to_optimize, | |
lr=learning_rate, | |
betas=(args.adam_beta1, args.adam_beta2), | |
weight_decay=args.adam_weight_decay, | |
eps=args.adam_epsilon, | |
) | |
dataset = InpaintDataset( | |
[{ | |
"source_image": "sm.png", | |
"target_image": "target.png", | |
}], | |
'imgs/', | |
size=(args.img_width, args.img_height), # w h | |
imgp_drop_rate=0.1, | |
imgg_drop_rate=0.1, | |
) | |
""" | |
dataset = InpaintDataset( | |
args.json_path, | |
args.image_root_path, | |
size=(args.img_width, args.img_height), # w h | |
imgp_drop_rate=0.1, | |
imgg_drop_rate=0.1, | |
) | |
""" | |
train_sampler = torch.utils.data.distributed.DistributedSampler( | |
dataset, num_replicas=accelerator.num_processes, rank=accelerator.process_index, shuffle=True) | |
train_dataloader = torch.utils.data.DataLoader( | |
dataset, | |
sampler=train_sampler, | |
collate_fn=InpaintCollate_fn, | |
batch_size=train_batch_size, | |
num_workers=2,) | |
# Scheduler and math around the number of training steps. | |
overrode_max_train_steps = False | |
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) | |
if args.max_train_steps is None: | |
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch | |
overrode_max_train_steps = True | |
lr_scheduler = get_scheduler( | |
args.lr_scheduler, | |
optimizer=optimizer, | |
num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes, | |
num_training_steps=args.max_train_steps * accelerator.num_processes, | |
num_cycles=args.lr_num_cycles, | |
power=args.lr_power, | |
) | |
# Prepare everything with our `accelerator`. | |
sd_model, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(sd_model, optimizer, train_dataloader, lr_scheduler) | |
# For mixed precision training we cast the text_encoder and vae weights to half-precision | |
# as these models are only used for inference, keeping weights in full precision is not required. | |
weight_dtype = torch.float32 | |
""" | |
if accelerator.mixed_precision == "fp16": | |
weight_dtype = torch.float16 | |
elif accelerator.mixed_precision == "bf16": | |
weight_dtype = torch.bfloat16 | |
""" | |
# Move vae, unet and text_encoder to device and cast to weight_dtype | |
vae.to(accelerator.device, dtype=weight_dtype) | |
unet.to(accelerator.device, dtype=weight_dtype) | |
image_encoder_p.to(accelerator.device, dtype=weight_dtype) | |
image_encoder_g.to(accelerator.device, dtype=weight_dtype) | |
# We need to recalculate our total training steps as the size of the training dataloader may have changed. | |
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) | |
if overrode_max_train_steps: | |
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch | |
# Afterwards we recalculate our number of training epochs | |
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) | |
# Train! | |
total_batch_size = ( | |
train_batch_size | |
* accelerator.num_processes | |
* args.gradient_accumulation_steps | |
) | |
logger.info("***** Running training *****") | |
logger.info(f" Num batches each epoch = {len(train_dataloader)}") | |
logger.info(f" Num Epochs = {args.num_train_epochs}") | |
logger.info(f" Instantaneous batch size per device = {train_batch_size}") | |
logger.info( | |
f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}" | |
) | |
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") | |
logger.info(f" Total optimization steps = {args.max_train_steps}") | |
if args.resume_from_checkpoint: | |
# New Code # | |
# Loads the DeepSpeed checkpoint from the specified path | |
prior_model, last_epoch, last_global_step = load_training_checkpoint( | |
sd_model, | |
args.resume_from_checkpoint, | |
**{"load_optimizer_states": True, "load_lr_scheduler_states": True}, | |
) | |
accelerator.print(f"Resumed from checkpoint: {args.resume_from_checkpoint}, global step: {last_global_step}") | |
starting_epoch = last_epoch | |
global_steps = last_global_step | |
sd_model = sd_model | |
else: | |
global_steps = 0 | |
starting_epoch = 0 | |
sd_model = sd_model | |
progress_bar = tqdm(range(global_steps, args.max_train_steps), initial=global_steps, desc="Steps", | |
# Only show the progress bar once on each machine. | |
disable=not accelerator.is_local_main_process, ) | |
bsz = train_batch_size | |
for epoch in range(starting_epoch, args.num_train_epochs): | |
for step, batch in enumerate(train_dataloader): | |
with accelerator.accumulate(sd_model): | |
with torch.no_grad(): | |
# Convert images to latent space | |
latents = vae.encode(batch["source_target_image"].to(dtype=weight_dtype)).latent_dist.sample() | |
latents = latents * vae.config.scaling_factor | |
# Get the masked image latents | |
masked_latents = vae.encode(batch["vae_source_mask_image"].to(dtype=weight_dtype)).latent_dist.sample() | |
masked_latents = masked_latents * vae.config.scaling_factor | |
# mask | |
mask1 = torch.ones((bsz, 1, int(args.img_height / 8), int(args.img_width / 8))).to(accelerator.device, dtype=weight_dtype) | |
mask0 = torch.zeros((bsz, 1, int(args.img_height / 8), int(args.img_width / 8))).to(accelerator.device, dtype=weight_dtype) | |
mask = torch.cat([mask1, mask0], dim=3) | |
# Get the image embedding for conditioning | |
cond_image_feature_p = image_encoder_p(batch["source_image"].to(accelerator.device, dtype=weight_dtype)) | |
cond_image_feature_p = (cond_image_feature_p.last_hidden_state) | |
cond_image_feature_g = image_encoder_g(batch["target_image"].to(accelerator.device, dtype=weight_dtype), ).image_embeds | |
cond_image_feature_g =cond_image_feature_g.unsqueeze(1) | |
# Sample noise that we'll add to the latents | |
noise = torch.randn_like(latents) | |
if args.noise_offset: | |
# https://www.crosslabs.org//blog/diffusion-with-offset-noise | |
noise += args.noise_offset * torch.randn( | |
(latents.shape[0], latents.shape[1], 1, 1), device=latents.device | |
) | |
# Sample a random timestep for each image | |
timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (train_batch_size,),device=latents.device, ) | |
timesteps = timesteps.long() | |
# Add noise to the latents according to the noise magnitude at each timestep (this is the forward diffusion process) | |
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps) | |
noisy_latents = torch.cat([noisy_latents, mask, masked_latents], dim=1) | |
# Get the text embedding for conditioning | |
cond_pose = batch["source_target_pose"].to(dtype=weight_dtype) | |
print(noisy_latents.size()) | |
print(cond_image_feature_p.size()) | |
print(cond_image_feature_g.size()) | |
print(cond_pose.size()) | |
# Predict the noise residual | |
model_pred = sd_model(noisy_latents, timesteps, cond_image_feature_p,cond_image_feature_g, cond_pose, ) | |
# Get the target for loss depending on the prediction type | |
if noise_scheduler.config.prediction_type == "epsilon": | |
target = noise | |
elif noise_scheduler.config.prediction_type == "v_prediction": | |
target = noise_scheduler.get_velocity(latents, noise, timesteps) | |
else: | |
raise ValueError( | |
f"Unknown prediction type {noise_scheduler.config.prediction_type}" | |
) | |
loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean") | |
accelerator.backward(loss) | |
if accelerator.sync_gradients: | |
params_to_clip = sd_model.parameters() | |
accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm) | |
optimizer.step() | |
lr_scheduler.step() | |
optimizer.zero_grad(set_to_none=args.set_grads_to_none) | |
# Checks if the accelerator has performed an optimization step behind the scenes | |
if accelerator.sync_gradients: | |
progress_bar.update(1) | |
global_steps += 1 | |
if global_steps % args.checkpointing_steps == 0: | |
""" | |
checkpoint_model( | |
args.output_dir, global_steps, sd_model, epoch, global_steps | |
) | |
""" | |
checkpoint_state_dict = { | |
"epoch": epoch, | |
"module": sd_model.state_dict(), | |
} | |
print(list(sd_model.state_dict().keys())[:20]) | |
torch.save(checkpoint_state_dict, "fine_tuned_pcdms.pt") | |
logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]} | |
print(logs) | |
progress_bar.set_postfix(**logs) | |
if global_steps >= args.max_train_steps: | |
break | |
# Create the pipeline using the trained modules and save it. | |
accelerator.wait_for_everyone() | |
accelerator.end_training() | |
if __name__ == "__main__": | |
main() | |
""" | |
python train2.py \ | |
--pretrained_model_name_or_path="stabilityai/stable-diffusion-2-1-base" \ | |
--output_dir="out/" \ | |
--img_height=512 \ | |
--img_width=512 \ | |
--learning_rate=1e-4 \ | |
--train_batch_size=8 \ | |
--max_train_steps=1000000 \ | |
--mixed_precision="fp16" \ | |
--checkpointing_steps=1 \ | |
--noise_offset=0.1 \ | |
--lr_warmup_steps 5000 \ | |
--seed 42 \ | |
--resume_from_checkpoint s2_512.pt | |
""" |