KeyframesAI / train2.py
acmyu's picture
initial commit
3366cca verified
import logging
import math
import os
from typing import Any, Dict, List, Optional, Tuple, Union
from diffusers.models.controlnet import ControlNetConditioningEmbedding
import torch
from torch import nn
import torch.nn.functional as F
import torch.utils.checkpoint
import transformers
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import ProjectConfiguration, set_seed
from tqdm.auto import tqdm
from src.configs.stage2_config import args
import diffusers
from diffusers import (
AutoencoderKL,
DDPMScheduler,
)
from diffusers.optimization import get_scheduler
from diffusers.utils import check_min_version, is_wandb_available
from src.dataset.stage2_dataset import InpaintDataset, InpaintCollate_fn
from transformers import CLIPVisionModelWithProjection
from transformers import Dinov2Model
from src.models.stage2_inpaint_unet_2d_condition import Stage2_InapintUNet2DConditionModel
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
check_min_version("0.18.0.dev0")
logger = get_logger(__name__)
class ImageProjModel_p(torch.nn.Module):
"""SD model with image prompt"""
def __init__(self, in_dim, hidden_dim, out_dim, dropout = 0.):
super().__init__()
self.net = nn.Sequential(
nn.Linear(in_dim, hidden_dim),
nn.GELU(),
nn.Dropout(dropout),
nn.LayerNorm(hidden_dim),
nn.Linear(hidden_dim, out_dim),
nn.Dropout(dropout)
)
def forward(self, x):
return self.net(x)
class ImageProjModel_g(torch.nn.Module):
"""SD model with image prompt"""
def __init__(self, in_dim, hidden_dim, out_dim, dropout = 0.):
super().__init__()
self.net = nn.Sequential(
nn.Linear(in_dim, hidden_dim),
nn.GELU(),
nn.Dropout(dropout),
nn.LayerNorm(hidden_dim),
nn.Linear(hidden_dim, out_dim),
nn.Dropout(dropout)
)
def forward(self, x): # b, 257,1280
return self.net(x)
class SDModel(torch.nn.Module):
"""SD model with image prompt"""
def __init__(self, unet) -> None:
super().__init__()
self.image_proj_model_p = ImageProjModel_p(in_dim=1536, hidden_dim=768, out_dim=1024)
self.unet = unet
self.pose_proj = ControlNetConditioningEmbedding(
conditioning_embedding_channels=320,
block_out_channels=(16, 32, 96, 256),
conditioning_channels=3)
def forward(self, noisy_latents, timesteps, simg_f_p, timg_f_g, pose_f):
extra_image_embeddings_p = self.image_proj_model_p(simg_f_p)
extra_image_embeddings_g = timg_f_g
print(extra_image_embeddings_p.size())
print(extra_image_embeddings_g.size())
encoder_image_hidden_states = torch.cat([extra_image_embeddings_p ,extra_image_embeddings_g], dim=1)
pose_cond = self.pose_proj(pose_f)
pred_noise = self.unet(noisy_latents, timesteps, class_labels=timg_f_g, encoder_hidden_states=encoder_image_hidden_states,my_pose_cond=pose_cond).sample
return pred_noise
def load_training_checkpoint2(model, load_dir, tag=None, **kwargs):
"""Utility function for checkpointing model + optimizer dictionaries
The main purpose for this is to be able to resume training from that instant again
"""
"""
checkpoint_state_dict= torch.load(load_dir, map_location="cpu")
print(checkpoint_state_dict.keys())
epoch = 0
last_global_step = 0
epoch = checkpoint_state_dict["epoch"]
last_global_step = checkpoint_state_dict["last_global_step"]
# TODO optimizer lr, and loss state
weight_dict = checkpoint_state_dict["module"]
new_weight_dict = {f"module.{key}": value for key, value in weight_dict.items()}
model.load_state_dict(new_weight_dict)
del checkpoint_state_dict
return model, epoch, last_global_step
"""
image_proj_model_p_dict = {}
pose_proj_dict = {}
unet_dict = {}
model_sd = torch.load(load_dir, map_location="cpu")["module"]
for k in model_sd.keys():
if k.startswith("pose_proj"):
pose_proj_dict[k.replace("pose_proj.", "")] = model_sd[k]
elif k.startswith("image_proj_model_p"):
image_proj_model_p_dict[k.replace("image_proj_model_p.", "")] = model_sd[k]
elif k.startswith("unet"):
unet_dict[k.replace("unet.", "")] = model_sd[k]
else:
print(k)
model.pose_proj.load_state_dict(pose_proj_dict)
model.image_proj_model_p.load_state_dict(image_proj_model_p_dict)
model.unet.load_state_dict(unet_dict)
return model, 0, 0
def load_training_checkpoint(model, load_dir, tag=None, **kwargs):
model_sd = torch.load(load_dir, map_location="cpu")["module"]
image_proj_model_dict = {}
pose_proj_dict = {}
unet_dict = {}
for k in model_sd.keys():
if k.startswith("pose_proj"):
pose_proj_dict[k.replace("pose_proj.", "")] = model_sd[k]
elif k.startswith("image_proj_model"):
image_proj_model_dict[k.replace("image_proj_model.", "")] = model_sd[k]
elif k.startswith("unet"):
unet_dict[k.replace("unet.", "")] = model_sd[k]
else:
print(k)
model.pose_proj.load_state_dict(pose_proj_dict)
model.image_proj_model_p.load_state_dict(image_proj_model_dict)
model.unet.load_state_dict(unet_dict)
return model, 0, 0
def checkpoint_model(checkpoint_folder, ckpt_id, model, epoch, last_global_step, **kwargs):
"""Utility function for checkpointing model + optimizer dictionaries
The main purpose for this is to be able to resume training from that instant again
"""
checkpoint_state_dict = {
"epoch": epoch,
"last_global_step": last_global_step,
}
# Add extra kwargs too
checkpoint_state_dict.update(kwargs)
success = model.save_checkpoint(checkpoint_folder, ckpt_id, checkpoint_state_dict)
status_msg = f"checkpointing: checkpoint_folder={checkpoint_folder}, ckpt_id={ckpt_id}"
if success:
logging.info(f"Success {status_msg}")
else:
logging.warning(f"Failure {status_msg}")
return
def main():
logging_dir = 'outputs/logging'
accelerator = Accelerator(
log_with=args.report_to,
project_dir=logging_dir,
mixed_precision=args.mixed_precision,
gradient_accumulation_steps=args.gradient_accumulation_steps
)
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO, )
logger.info(accelerator.state, main_process_only=False)
if accelerator.is_local_main_process:
transformers.utils.logging.set_verbosity_warning()
diffusers.utils.logging.set_verbosity_info()
else:
transformers.utils.logging.set_verbosity_error()
diffusers.utils.logging.set_verbosity_error()
# If passed along, set the training seed now.
set_seed(42)
# Handle the repository creation
if accelerator.is_main_process:
os.makedirs('outputs', exist_ok=True)
# Load scheduler
noise_scheduler = DDPMScheduler.from_pretrained("stabilityai/stable-diffusion-2-1-base", subfolder="scheduler")
# Load model
image_encoder_p = Dinov2Model.from_pretrained('facebook/dinov2-giant')
image_encoder_g = CLIPVisionModelWithProjection.from_pretrained('laion/CLIP-ViT-H-14-laion2B-s32B-b79K')#("openai/clip-vit-base-patch32")
vae = AutoencoderKL.from_pretrained("stabilityai/stable-diffusion-2-1-base", subfolder="vae")
unet = Stage2_InapintUNet2DConditionModel.from_pretrained("stabilityai/stable-diffusion-2-1-base", torch_dtype=torch.float16,subfolder="unet",in_channels=9, low_cpu_mem_usage=False, ignore_mismatched_sizes=True)
"""
unet = Stage2_InapintUNet2DConditionModel.from_pretrained("stabilityai/stable-diffusion-2-1-base", subfolder="unet",
in_channels=9, class_embed_type="projection" ,projection_class_embeddings_input_dim=1024,
low_cpu_mem_usage=False, ignore_mismatched_sizes=True)
"""
image_encoder_p.requires_grad_(False)
image_encoder_g.requires_grad_(False)
vae.requires_grad_(False)
sd_model = SDModel(unet=unet)
sd_model.train()
if args.gradient_checkpointing:
sd_model.enable_gradient_checkpointing()
# Enable TF32 for faster training on Ampere GPUs,
# cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices
if args.allow_tf32:
torch.backends.cuda.matmul.allow_tf32 = True
learning_rate = 1e-4
train_batch_size = 1
# Optimizer creation
params_to_optimize = sd_model.parameters()
optimizer = torch.optim.AdamW(
params_to_optimize,
lr=learning_rate,
betas=(args.adam_beta1, args.adam_beta2),
weight_decay=args.adam_weight_decay,
eps=args.adam_epsilon,
)
dataset = InpaintDataset(
[{
"source_image": "sm.png",
"target_image": "target.png",
}],
'imgs/',
size=(args.img_width, args.img_height), # w h
imgp_drop_rate=0.1,
imgg_drop_rate=0.1,
)
"""
dataset = InpaintDataset(
args.json_path,
args.image_root_path,
size=(args.img_width, args.img_height), # w h
imgp_drop_rate=0.1,
imgg_drop_rate=0.1,
)
"""
train_sampler = torch.utils.data.distributed.DistributedSampler(
dataset, num_replicas=accelerator.num_processes, rank=accelerator.process_index, shuffle=True)
train_dataloader = torch.utils.data.DataLoader(
dataset,
sampler=train_sampler,
collate_fn=InpaintCollate_fn,
batch_size=train_batch_size,
num_workers=2,)
# Scheduler and math around the number of training steps.
overrode_max_train_steps = False
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
if args.max_train_steps is None:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
overrode_max_train_steps = True
lr_scheduler = get_scheduler(
args.lr_scheduler,
optimizer=optimizer,
num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes,
num_training_steps=args.max_train_steps * accelerator.num_processes,
num_cycles=args.lr_num_cycles,
power=args.lr_power,
)
# Prepare everything with our `accelerator`.
sd_model, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(sd_model, optimizer, train_dataloader, lr_scheduler)
# For mixed precision training we cast the text_encoder and vae weights to half-precision
# as these models are only used for inference, keeping weights in full precision is not required.
weight_dtype = torch.float32
"""
if accelerator.mixed_precision == "fp16":
weight_dtype = torch.float16
elif accelerator.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
"""
# Move vae, unet and text_encoder to device and cast to weight_dtype
vae.to(accelerator.device, dtype=weight_dtype)
unet.to(accelerator.device, dtype=weight_dtype)
image_encoder_p.to(accelerator.device, dtype=weight_dtype)
image_encoder_g.to(accelerator.device, dtype=weight_dtype)
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
if overrode_max_train_steps:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
# Afterwards we recalculate our number of training epochs
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
# Train!
total_batch_size = (
train_batch_size
* accelerator.num_processes
* args.gradient_accumulation_steps
)
logger.info("***** Running training *****")
logger.info(f" Num batches each epoch = {len(train_dataloader)}")
logger.info(f" Num Epochs = {args.num_train_epochs}")
logger.info(f" Instantaneous batch size per device = {train_batch_size}")
logger.info(
f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}"
)
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
logger.info(f" Total optimization steps = {args.max_train_steps}")
if args.resume_from_checkpoint:
# New Code #
# Loads the DeepSpeed checkpoint from the specified path
prior_model, last_epoch, last_global_step = load_training_checkpoint(
sd_model,
args.resume_from_checkpoint,
**{"load_optimizer_states": True, "load_lr_scheduler_states": True},
)
accelerator.print(f"Resumed from checkpoint: {args.resume_from_checkpoint}, global step: {last_global_step}")
starting_epoch = last_epoch
global_steps = last_global_step
sd_model = sd_model
else:
global_steps = 0
starting_epoch = 0
sd_model = sd_model
progress_bar = tqdm(range(global_steps, args.max_train_steps), initial=global_steps, desc="Steps",
# Only show the progress bar once on each machine.
disable=not accelerator.is_local_main_process, )
bsz = train_batch_size
for epoch in range(starting_epoch, args.num_train_epochs):
for step, batch in enumerate(train_dataloader):
with accelerator.accumulate(sd_model):
with torch.no_grad():
# Convert images to latent space
latents = vae.encode(batch["source_target_image"].to(dtype=weight_dtype)).latent_dist.sample()
latents = latents * vae.config.scaling_factor
# Get the masked image latents
masked_latents = vae.encode(batch["vae_source_mask_image"].to(dtype=weight_dtype)).latent_dist.sample()
masked_latents = masked_latents * vae.config.scaling_factor
# mask
mask1 = torch.ones((bsz, 1, int(args.img_height / 8), int(args.img_width / 8))).to(accelerator.device, dtype=weight_dtype)
mask0 = torch.zeros((bsz, 1, int(args.img_height / 8), int(args.img_width / 8))).to(accelerator.device, dtype=weight_dtype)
mask = torch.cat([mask1, mask0], dim=3)
# Get the image embedding for conditioning
cond_image_feature_p = image_encoder_p(batch["source_image"].to(accelerator.device, dtype=weight_dtype))
cond_image_feature_p = (cond_image_feature_p.last_hidden_state)
cond_image_feature_g = image_encoder_g(batch["target_image"].to(accelerator.device, dtype=weight_dtype), ).image_embeds
cond_image_feature_g =cond_image_feature_g.unsqueeze(1)
# Sample noise that we'll add to the latents
noise = torch.randn_like(latents)
if args.noise_offset:
# https://www.crosslabs.org//blog/diffusion-with-offset-noise
noise += args.noise_offset * torch.randn(
(latents.shape[0], latents.shape[1], 1, 1), device=latents.device
)
# Sample a random timestep for each image
timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (train_batch_size,),device=latents.device, )
timesteps = timesteps.long()
# Add noise to the latents according to the noise magnitude at each timestep (this is the forward diffusion process)
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
noisy_latents = torch.cat([noisy_latents, mask, masked_latents], dim=1)
# Get the text embedding for conditioning
cond_pose = batch["source_target_pose"].to(dtype=weight_dtype)
print(noisy_latents.size())
print(cond_image_feature_p.size())
print(cond_image_feature_g.size())
print(cond_pose.size())
# Predict the noise residual
model_pred = sd_model(noisy_latents, timesteps, cond_image_feature_p,cond_image_feature_g, cond_pose, )
# Get the target for loss depending on the prediction type
if noise_scheduler.config.prediction_type == "epsilon":
target = noise
elif noise_scheduler.config.prediction_type == "v_prediction":
target = noise_scheduler.get_velocity(latents, noise, timesteps)
else:
raise ValueError(
f"Unknown prediction type {noise_scheduler.config.prediction_type}"
)
loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")
accelerator.backward(loss)
if accelerator.sync_gradients:
params_to_clip = sd_model.parameters()
accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad(set_to_none=args.set_grads_to_none)
# Checks if the accelerator has performed an optimization step behind the scenes
if accelerator.sync_gradients:
progress_bar.update(1)
global_steps += 1
if global_steps % args.checkpointing_steps == 0:
"""
checkpoint_model(
args.output_dir, global_steps, sd_model, epoch, global_steps
)
"""
checkpoint_state_dict = {
"epoch": epoch,
"module": sd_model.state_dict(),
}
print(list(sd_model.state_dict().keys())[:20])
torch.save(checkpoint_state_dict, "fine_tuned_pcdms.pt")
logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]}
print(logs)
progress_bar.set_postfix(**logs)
if global_steps >= args.max_train_steps:
break
# Create the pipeline using the trained modules and save it.
accelerator.wait_for_everyone()
accelerator.end_training()
if __name__ == "__main__":
main()
"""
python train2.py \
--pretrained_model_name_or_path="stabilityai/stable-diffusion-2-1-base" \
--output_dir="out/" \
--img_height=512 \
--img_width=512 \
--learning_rate=1e-4 \
--train_batch_size=8 \
--max_train_steps=1000000 \
--mixed_precision="fp16" \
--checkpointing_steps=1 \
--noise_offset=0.1 \
--lr_warmup_steps 5000 \
--seed 42 \
--resume_from_checkpoint s2_512.pt
"""