Spaces:
Sleeping
Sleeping
File size: 4,695 Bytes
59f4cee aa99e27 59f4cee aa99e27 59f4cee aa99e27 59f4cee aa99e27 59f4cee aa99e27 59f4cee aa99e27 59f4cee aa99e27 59f4cee aa99e27 59f4cee aa99e27 59f4cee aa99e27 59f4cee aa99e27 59f4cee aa99e27 59f4cee aa99e27 59f4cee aa99e27 59f4cee aa99e27 59f4cee aa99e27 59f4cee 8e13d87 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
import io
import pickle
import numpy as np
import torch
from fastapi import FastAPI, UploadFile, File, Form
from fastapi.middleware.cors import CORSMiddleware
from PIL import Image
from transformers import AutoTokenizer, AutoModel
import open_clip
import re
device = "cuda" if torch.cuda.is_available() else "cpu"
# step 1: load the models
TEXT_MODEL_NAME = "indobenchmark/indobert-large-p1"
tokenizer = AutoTokenizer.from_pretrained(TEXT_MODEL_NAME)
text_model = AutoModel.from_pretrained(TEXT_MODEL_NAME).to(device)
text_model.eval()
clip_model, _, clip_preprocess = open_clip.create_model_and_transforms("EVA01-g-14-plus", pretrained="merged2b_s11b_b114k")
clip_model.to(device)
clip_model.eval()
with open("xgb_full.pkl", "rb") as f:
xgb_model = pickle.load(f)
with open("k-means.pkl", "rb") as f:
kmeans = pickle.load(f)
# step 2: preprocessing
def preprocess_text(text: str) -> str:
text = str(text).lower()
text = re.sub(r'http\S+|www\.\S+', '', text)
text = re.sub(r'@\w+|#\w+', '', text)
text = re.sub(r'[^a-z\s]', ' ', text)
text = re.sub(r'\s+', ' ', text).strip()
return " ".join(text.split())
# step 3: feature encoding (text and image)
def encode_text(text: str):
# step 3.1 preprocess text
processed = preprocess_text(text)
# step 3.2 tokenize text
tokens = tokenizer(
processed,
return_tensors="pt",
padding="max_length",
truncation=True,
max_length=128,
)
tokens = {k: v.to(device) for k, v in tokens.items()}
with torch.no_grad():
# take the [CLS] token
out = text_model(**tokens).last_hidden_state[:, 0, :]
return out.cpu().numpy()
def encode_image(image_bytes):
# step 4.1 load the image
img = Image.open(io.BytesIO(image_bytes)).convert("RGB")
# step 4.2 encode the image into a tensor (embedding image)
tensor = clip_preprocess(img).unsqueeze(0).to(device)
with torch.no_grad():
emb = clip_model.encode_image(tensor)
return emb.cpu().numpy()
app = FastAPI(
title="Multimodal Water Pollution Risk API",
description=(
"Input: text + image + geospatial + time\n"
"Model: IndoBERT + EVA-CLIP + XGBoost\n"
),
version="1.0.3",
)
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_methods=["*"],
allow_headers=["*"],
)
@app.get("/")
def root():
return {
"status": "OK",
"message": "Multimodal Water Pollution Risk API is running.",
"info": "Use POST /predict with text, image, and features.",
}
@app.post("/predict")
async def predict(
text: str = Form(...),
longitude: float = Form(...),
latitude: float = Form(...),
hour: int = Form(...),
dayofweek: int = Form(...),
month: int = Form(...),
image: UploadFile = File(...),
):
# 1. Encode text
text_emb = encode_text(text)
# 2. Encode image
img_bytes = await image.read()
img_emb = encode_image(img_bytes)
# 3. Generate the location cluster
location_cluster = int(kmeans.predict([[latitude, longitude]])[0])
# 4. Create feature vector
add_feats = np.array([[longitude, latitude, location_cluster, hour, dayofweek, month]], dtype=np.float32)
# 5. Early Fusion
fused = np.concatenate([img_emb, text_emb, add_feats], axis=1)
# 6. Predict
proba = xgb_model.predict_proba(fused)[0]
pred_idx = int(np.argmax(proba))
label = "KRITIS" if pred_idx == 1 else "WASPADA"
return {
"prediction": label,
"cluster_used": location_cluster,
"probabilities": {
"WASPADA": float(proba[0]),
"KRITIS": float(proba[1])
}
}
@app.post("/predict_proba")
async def predict_proba(
text: str = Form(...),
longitude: float = Form(...),
latitude: float = Form(...),
hour: int = Form(...),
dayofweek: int = Form(...),
month: int = Form(...),
image: UploadFile = File(...),
):
text_emb = encode_text(text)
img_bytes = await image.read()
img_emb = encode_image(img_bytes)
location_cluster = int(kmeans.predict([[latitude, longitude]])[0])
add_feats = np.array([[longitude, latitude, location_cluster, hour, dayofweek, month]], dtype=np.float32)
fused = np.concatenate([img_emb, text_emb, add_feats], axis=1)
proba = xgb_model.predict_proba(fused)[0]
return {
"WASPADA": float(proba[0]),
"KRITIS": float(proba[1]),
"cluster_used": location_cluster,
}
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860) |