|
import torch |
|
|
|
from llava.constants import X_TOKEN_INDEX |
|
from llava.conversation import conv_templates, SeparatorStyle |
|
from llava.mm_utils import get_model_name_from_path, KeywordsStoppingCriteria, tokenizer_X_token |
|
from llava.model.builder import load_pretrained_model |
|
from llava.utils import disable_torch_init |
|
|
|
|
|
|
|
import re |
|
import torch |
|
|
|
|
|
GEN_KW = dict( |
|
do_sample=False, |
|
temperature=0.0, |
|
top_p=1.0, |
|
repetition_penalty=1.15, |
|
no_repeat_ngram_size=3, |
|
use_cache=False, |
|
) |
|
|
|
def _big_gpu(): |
|
try: |
|
return (torch.cuda.is_available() |
|
and torch.cuda.get_device_properties(0).total_memory / 1024**3 >= 40) |
|
except Exception: |
|
return False |
|
|
|
MAX_NEW_TOKENS_SMALL = 128 |
|
MAX_NEW_TOKENS_BIG = 256 |
|
|
|
def build_framewise_prompt(T: int) -> str: |
|
return ( |
|
f"You will output exactly {T} plain lines, one per frame.\n" |
|
"Format strictly:\n" |
|
"Frame 1: <<=10 words>\n" |
|
"Frame 2: <<=10 words>\n" |
|
"...\n" |
|
"No brackets [], no JSON, no code blocks, no numbered list other than 'Frame i:'." |
|
) |
|
|
|
def keep_frame_lines(text: str, T: int) -> str: |
|
\"\"\"Keep only `Frame i: ...` lines; ensure frames 1..T exist.\"\"\" |
|
lines = [] |
|
for ln in text.splitlines(): |
|
m = re.match(r\"^Frame\\s+(\\d+)\\s*:\\s*(.+)$\", ln.strip()) |
|
if not m: |
|
continue |
|
i = int(m.group(1)) |
|
body = \" \".join(m.group(2).split()[:10]) # ≤10 words |
|
if 1 <= i <= T: |
|
lines.append((i, f\"Frame {i}: {body}\")) |
|
have = {i for i,_ in lines} |
|
for i in range(1, T+1): |
|
if i not in have: |
|
lines.append((i, f\"Frame {i}: (no description)\")) # never leaves gaps |
|
return \"\\n\".join(t for _, t in sorted(lines)) |
|
# ==== end helpers ==== |
|
|
|
|
|
title_markdown = (""" |
|
<div style="display: flex; justify-content: center; align-items: center; text-align: center;"> |
|
<a href="https://github.com/PKU-YuanGroup/Video-LLaVA" style="margin-right: 20px; text-decoration: none; display: flex; align-items: center;"> |
|
<img src="https://z1.ax1x.com/2023/11/07/pil4sqH.png" alt="Video-LLaVA🚀" style="max-width: 120px; height: auto;"> |
|
</a> |
|
<div> |
|
<h1 >Video-LLaVA: Video-LLaVA: Learning United Visual Representation by Alignment Before Projection</h1> |
|
<h5 style="margin: 0;">If you like our project, please give us a star ✨ on Github for the latest update.</h5> |
|
</div> |
|
</div> |
|
|
|
|
|
<div align="center"> |
|
<div style="display:flex; gap: 0.25rem;" align="center"> |
|
<a href='https://github.com/PKU-YuanGroup/Video-LLaVA'><img src='https://img.shields.io/badge/Github-Code-blue'></a> |
|
<a href="https://arxiv.org/pdf/2311.10122.pdf"><img src="https://img.shields.io/badge/Arxiv-2311.10122-red"></a> |
|
<a href='https://github.com/PKU-YuanGroup/Video-LLaVA/stargazers'><img src='https://img.shields.io/github/stars/PKU-YuanGroup/Video-LLaVA.svg?style=social'></a> |
|
</div> |
|
</div> |
|
""") |
|
|
|
block_css = """ |
|
|
|
min-width: min(120px,100%); |
|
} |
|
""" |
|
|
|
|
|
tos_markdown = (""" |
|
|
|
By using this service, users are required to agree to the following terms: |
|
The service is a research preview intended for non-commercial use only. It only provides limited safety measures and may generate offensive content. It must not be used for any illegal, harmful, violent, racist, or sexual purposes. The service may collect user dialogue data for future research. |
|
Please click the "Flag" button if you get any inappropriate answer! We will collect those to keep improving our moderator. |
|
For an optimal experience, please use desktop computers for this demo, as mobile devices may compromise its quality. |
|
""") |
|
|
|
|
|
learn_more_markdown = (""" |
|
|
|
The service is a research preview intended for non-commercial use only, subject to the model [License](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) of LLaMA, [Terms of Use](https://openai.com/policies/terms-of-use) of the data generated by OpenAI, and [Privacy Practices](https://chrome.google.com/webstore/detail/sharegpt-share-your-chatg/daiacboceoaocpibfodeljbdfacokfjb) of ShareGPT. Please contact us if you find any potential violation. |
|
""") |
|
|
|
|
|
class Chat: |
|
def __init__(self, model_path, conv_mode, model_base=None, load_8bit=False, load_4bit=False, device='cuda'): |
|
disable_torch_init() |
|
model_name = get_model_name_from_path(model_path) |
|
self.tokenizer, self.model, processor, context_len = load_pretrained_model(model_path, model_base, model_name, |
|
load_8bit, load_4bit, |
|
device=device) |
|
self.image_processor = processor['image'] |
|
self.video_processor = processor['video'] |
|
self.conv_mode = conv_mode |
|
self.device = self.model.device |
|
print(self.model) |
|
|
|
def get_prompt(self, qs, state): |
|
state.append_message(state.roles[0], qs) |
|
state.append_message(state.roles[1], None) |
|
return state |
|
|
|
@torch.inference_mode() |
|
def generate(self, images_tensor: list, prompt: str, first_run: bool, state): |
|
tokenizer, model, image_processor = self.tokenizer, self.model, self.image_processor |
|
|
|
state = self.get_prompt(prompt, state) |
|
prompt = state.get_prompt() |
|
print('\n\n\n') |
|
print(prompt) |
|
|
|
if 'image' in images_tensor[1] and 'video' not in images_tensor[1]: |
|
input_ids = tokenizer_X_token(prompt, tokenizer, X_TOKEN_INDEX['IMAGE'], return_tensors='pt').unsqueeze(0).to(self.device) |
|
elif 'image' not in images_tensor[1] and 'video' in images_tensor[1]: |
|
input_ids = tokenizer_X_token(prompt, tokenizer, X_TOKEN_INDEX['VIDEO'], return_tensors='pt').unsqueeze(0).to(self.device) |
|
elif 'image' in images_tensor[1] and 'video' in images_tensor[1]: |
|
# <video>\nxxxxxxx\n<image> |
|
''' |
|
tensor([[1, -200, 29871, 13, 3068, 366, 1074, 1716, 278, 1967, 322, 4863, 29973, 319, 1799, 9047, 13566, 29901]]) |
|
tensor([[1, -201, 29871, 13]]) |
|
''' |
|
print("split: ", prompt.split('\n<image>')) |
|
# print("\n", tokenizer_X_token('\n', tokenizer, X_TOKEN_INDEX['IMAGE'], return_tensors='pt')) |
|
# print("?", tokenizer_X_token('?', tokenizer, X_TOKEN_INDEX['IMAGE'], return_tensors='pt')) |
|
# print("image", tokenizer_X_token('image', tokenizer, X_TOKEN_INDEX['IMAGE'], return_tensors='pt')) |
|
# print("image?", tokenizer_X_token('image?', tokenizer, X_TOKEN_INDEX['IMAGE'], return_tensors='pt')) |
|
# print("USER: <image>\nWhat is unusual about this image?", tokenizer_X_token('USER: <image>\nWhat is unusual about this image?', tokenizer, X_TOKEN_INDEX['IMAGE'], return_tensors='pt')) |
|
input_ids1 = tokenizer_X_token(prompt.split('\n<image>')[0], tokenizer, X_TOKEN_INDEX['VIDEO'], return_tensors='pt').unsqueeze(0).to(self.device) |
|
print('input_ids1', input_ids1) |
|
input_ids2 = tokenizer_X_token(prompt.split('\n<image>')[-1], tokenizer, X_TOKEN_INDEX['VIDEO'], return_tensors='pt').unsqueeze(0).to(self.device) |
|
print('input_ids2', input_ids2) |
|
input_ids3 = tokenizer_X_token('\n<image>', tokenizer, X_TOKEN_INDEX['IMAGE'], return_tensors='pt').unsqueeze(0).to(self.device) |
|
print('input_ids3', input_ids3) |
|
|
|
input_ids = torch.cat([input_ids1, input_ids3[:, 1:], input_ids2[:, 1:]], dim=-1) |
|
print('input_ids', input_ids) |
|
print(*[tokenizer.decode(i) for i in input_ids2[0]]) |
|
else: |
|
input_ids = tokenizer_X_token(prompt, tokenizer, X_TOKEN_INDEX['IMAGE'], return_tensors='pt').unsqueeze(0).to(self.device) |
|
|
|
temperature = 0.1 |
|
|
|
max_new_tokens = 1024 |
|
|
|
stop_str = conv_templates[self.conv_mode].copy().sep if conv_templates[self.conv_mode].copy().sep_style != SeparatorStyle.TWO else \ |
|
conv_templates[self.conv_mode].copy().sep2 |
|
keywords = [stop_str] |
|
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids) |
|
# streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) |
|
# print(input_ids, images_tensor[0][0].shape) |
|
with torch.inference_mode(): |
|
# infer how many frames actually went in (works for list-of-frames or tensors) |
|
def _infer_T(imgs): |
|
try: |
|
if isinstance(imgs, (list, tuple)) and len(imgs) > 0: |
|
first = imgs[0] |
|
if isinstance(first, (list, tuple)): |
|
return len(first) |
|
if hasattr(first, "shape"): |
|
shp = list(first.shape) |
|
if len(shp) >= 4: # [T, C, H, W] or [1, T, C, H, W] |
|
return int(shp[0]) |
|
except Exception: |
|
pass |
|
return 8 # safe default |
|
|
|
_T = _infer_T(images_tensor) |
|
|
|
# VRAM-aware cap: more frames → allow a few more tokens, but stay safe on L4 |
|
max_new_tokens = min(16 * max(1, _T), MAX_NEW_TOKENS_BIG if _big_gpu() else MAX_NEW_TOKENS_SMALL) |
|
|
|
output_ids = model.generate( |
|
input_ids, |
|
images=images_tensor, |
|
max_new_tokens=max_new_tokens, |
|
**GEN_KW, # <- deterministic + lower VRAM |
|
stopping_criteria=[stopping_criteria], |
|
) |
|
|
|
|
|
input_token_len = input_ids.shape[1] |
|
n_diff_input_output = (input_ids != output_ids[:, :input_token_len]).sum().item() |
|
if n_diff_input_output > 0: |
|
print(f'[Warning] {n_diff_input_output} output_ids are not the same as the input_ids') |
|
outputs = tokenizer.batch_decode(output_ids[:, input_token_len:], skip_special_tokens=True)[0] |
|
outputs = outputs.strip() |
|
# If user asked about frames, force a clean "Frame i: ..." list |
|
try: |
|
_T = _infer_T(images_tensor) |
|
except Exception: |
|
_T = 8 |
|
if "frame" in prompt.lower(): |
|
cleaned = keep_frame_lines(outputs, _T) |
|
if cleaned.strip(): |
|
outputs = cleaned |
|
|
|
print("response", outputs) |
|
return outputs, state |
|
|
|
|
|
|
|
|