Upload 5 files
#222
by
shrutikaP8497
- opened
- app.py +49 -188
- retriever.py +27 -0
- submission.py +74 -0
- tools.py +35 -0
- utils.py +72 -0
app.py
CHANGED
@@ -1,196 +1,57 @@
|
|
1 |
-
import os
|
2 |
import gradio as gr
|
3 |
import requests
|
4 |
-
import
|
5 |
-
|
6 |
-
|
7 |
-
# (Keep Constants as is)
|
8 |
-
# --- Constants ---
|
9 |
-
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
10 |
-
|
11 |
-
# --- Basic Agent Definition ---
|
12 |
-
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
|
13 |
-
class BasicAgent:
|
14 |
-
def __init__(self):
|
15 |
-
print("BasicAgent initialized.")
|
16 |
-
def __call__(self, question: str) -> str:
|
17 |
-
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
18 |
-
fixed_answer = "This is a default answer."
|
19 |
-
print(f"Agent returning fixed answer: {fixed_answer}")
|
20 |
-
return fixed_answer
|
21 |
-
|
22 |
-
def run_and_submit_all( profile: gr.OAuthProfile | None):
|
23 |
-
"""
|
24 |
-
Fetches all questions, runs the BasicAgent on them, submits all answers,
|
25 |
-
and displays the results.
|
26 |
-
"""
|
27 |
-
# --- Determine HF Space Runtime URL and Repo URL ---
|
28 |
-
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
|
29 |
-
|
30 |
-
if profile:
|
31 |
-
username= f"{profile.username}"
|
32 |
-
print(f"User logged in: {username}")
|
33 |
-
else:
|
34 |
-
print("User not logged in.")
|
35 |
-
return "Please Login to Hugging Face with the button.", None
|
36 |
-
|
37 |
-
api_url = DEFAULT_API_URL
|
38 |
-
questions_url = f"{api_url}/questions"
|
39 |
-
submit_url = f"{api_url}/submit"
|
40 |
-
|
41 |
-
# 1. Instantiate Agent ( modify this part to create your agent)
|
42 |
-
try:
|
43 |
-
agent = BasicAgent()
|
44 |
-
except Exception as e:
|
45 |
-
print(f"Error instantiating agent: {e}")
|
46 |
-
return f"Error initializing agent: {e}", None
|
47 |
-
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
|
48 |
-
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
49 |
-
print(agent_code)
|
50 |
-
|
51 |
-
# 2. Fetch Questions
|
52 |
-
print(f"Fetching questions from: {questions_url}")
|
53 |
-
try:
|
54 |
-
response = requests.get(questions_url, timeout=15)
|
55 |
-
response.raise_for_status()
|
56 |
-
questions_data = response.json()
|
57 |
-
if not questions_data:
|
58 |
-
print("Fetched questions list is empty.")
|
59 |
-
return "Fetched questions list is empty or invalid format.", None
|
60 |
-
print(f"Fetched {len(questions_data)} questions.")
|
61 |
-
except requests.exceptions.RequestException as e:
|
62 |
-
print(f"Error fetching questions: {e}")
|
63 |
-
return f"Error fetching questions: {e}", None
|
64 |
-
except requests.exceptions.JSONDecodeError as e:
|
65 |
-
print(f"Error decoding JSON response from questions endpoint: {e}")
|
66 |
-
print(f"Response text: {response.text[:500]}")
|
67 |
-
return f"Error decoding server response for questions: {e}", None
|
68 |
-
except Exception as e:
|
69 |
-
print(f"An unexpected error occurred fetching questions: {e}")
|
70 |
-
return f"An unexpected error occurred fetching questions: {e}", None
|
71 |
-
|
72 |
-
# 3. Run your Agent
|
73 |
-
results_log = []
|
74 |
-
answers_payload = []
|
75 |
-
print(f"Running agent on {len(questions_data)} questions...")
|
76 |
-
for item in questions_data:
|
77 |
-
task_id = item.get("task_id")
|
78 |
-
question_text = item.get("question")
|
79 |
-
if not task_id or question_text is None:
|
80 |
-
print(f"Skipping item with missing task_id or question: {item}")
|
81 |
-
continue
|
82 |
-
try:
|
83 |
-
submitted_answer = agent(question_text)
|
84 |
-
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
85 |
-
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
86 |
-
except Exception as e:
|
87 |
-
print(f"Error running agent on task {task_id}: {e}")
|
88 |
-
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
|
89 |
-
|
90 |
-
if not answers_payload:
|
91 |
-
print("Agent did not produce any answers to submit.")
|
92 |
-
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
93 |
-
|
94 |
-
# 4. Prepare Submission
|
95 |
-
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
96 |
-
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
|
97 |
-
print(status_update)
|
98 |
-
|
99 |
-
# 5. Submit
|
100 |
-
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
|
101 |
-
try:
|
102 |
-
response = requests.post(submit_url, json=submission_data, timeout=60)
|
103 |
-
response.raise_for_status()
|
104 |
-
result_data = response.json()
|
105 |
-
final_status = (
|
106 |
-
f"Submission Successful!\n"
|
107 |
-
f"User: {result_data.get('username')}\n"
|
108 |
-
f"Overall Score: {result_data.get('score', 'N/A')}% "
|
109 |
-
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
|
110 |
-
f"Message: {result_data.get('message', 'No message received.')}"
|
111 |
-
)
|
112 |
-
print("Submission successful.")
|
113 |
-
results_df = pd.DataFrame(results_log)
|
114 |
-
return final_status, results_df
|
115 |
-
except requests.exceptions.HTTPError as e:
|
116 |
-
error_detail = f"Server responded with status {e.response.status_code}."
|
117 |
-
try:
|
118 |
-
error_json = e.response.json()
|
119 |
-
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
|
120 |
-
except requests.exceptions.JSONDecodeError:
|
121 |
-
error_detail += f" Response: {e.response.text[:500]}"
|
122 |
-
status_message = f"Submission Failed: {error_detail}"
|
123 |
-
print(status_message)
|
124 |
-
results_df = pd.DataFrame(results_log)
|
125 |
-
return status_message, results_df
|
126 |
-
except requests.exceptions.Timeout:
|
127 |
-
status_message = "Submission Failed: The request timed out."
|
128 |
-
print(status_message)
|
129 |
-
results_df = pd.DataFrame(results_log)
|
130 |
-
return status_message, results_df
|
131 |
-
except requests.exceptions.RequestException as e:
|
132 |
-
status_message = f"Submission Failed: Network error - {e}"
|
133 |
-
print(status_message)
|
134 |
-
results_df = pd.DataFrame(results_log)
|
135 |
-
return status_message, results_df
|
136 |
-
except Exception as e:
|
137 |
-
status_message = f"An unexpected error occurred during submission: {e}"
|
138 |
-
print(status_message)
|
139 |
-
results_df = pd.DataFrame(results_log)
|
140 |
-
return status_message, results_df
|
141 |
-
|
142 |
-
|
143 |
-
# --- Build Gradio Interface using Blocks ---
|
144 |
-
with gr.Blocks() as demo:
|
145 |
-
gr.Markdown("# Basic Agent Evaluation Runner")
|
146 |
-
gr.Markdown(
|
147 |
-
"""
|
148 |
-
**Instructions:**
|
149 |
-
|
150 |
-
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
|
151 |
-
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
|
152 |
-
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
|
153 |
-
|
154 |
-
---
|
155 |
-
**Disclaimers:**
|
156 |
-
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
|
157 |
-
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
|
158 |
-
"""
|
159 |
-
)
|
160 |
-
|
161 |
-
gr.LoginButton()
|
162 |
-
|
163 |
-
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
164 |
-
|
165 |
-
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
166 |
-
# Removed max_rows=10 from DataFrame constructor
|
167 |
-
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
168 |
-
|
169 |
-
run_button.click(
|
170 |
-
fn=run_and_submit_all,
|
171 |
-
outputs=[status_output, results_table]
|
172 |
-
)
|
173 |
|
174 |
-
|
175 |
-
print("\n" + "-"*30 + " App Starting " + "-"*30)
|
176 |
-
# Check for SPACE_HOST and SPACE_ID at startup for information
|
177 |
-
space_host_startup = os.getenv("SPACE_HOST")
|
178 |
-
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
|
179 |
|
180 |
-
|
181 |
-
|
182 |
-
|
|
|
183 |
else:
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
|
|
|
|
|
|
|
|
|
|
190 |
else:
|
191 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
192 |
|
193 |
-
|
|
|
|
|
|
|
|
|
|
|
194 |
|
195 |
-
|
196 |
-
demo.launch(debug=True, share=False)
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import requests
|
3 |
+
import os
|
4 |
+
from agent import run_agent_on_question
|
5 |
+
from utils import get_hf_username, get_code_link
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
+
API_BASE = "https://agents-course-unit4-scoring.hf.space"
|
|
|
|
|
|
|
|
|
8 |
|
9 |
+
def fetch_questions():
|
10 |
+
response = requests.get(f"{API_BASE}/questions")
|
11 |
+
if response.status_code == 200:
|
12 |
+
return response.json()
|
13 |
else:
|
14 |
+
return []
|
15 |
+
|
16 |
+
def submit_answers(answers, username, code_link):
|
17 |
+
payload = {
|
18 |
+
"username": username,
|
19 |
+
"agent_code": code_link,
|
20 |
+
"answers": answers
|
21 |
+
}
|
22 |
+
response = requests.post(f"{API_BASE}/submit", json=payload)
|
23 |
+
if response.status_code == 200:
|
24 |
+
return response.json()
|
25 |
else:
|
26 |
+
return {"message": "Submission failed.", "score": 0}
|
27 |
+
|
28 |
+
def run_and_submit():
|
29 |
+
print("Fetching questions...")
|
30 |
+
questions = fetch_questions()
|
31 |
+
print(f"Fetched {len(questions)} questions")
|
32 |
+
|
33 |
+
answers = []
|
34 |
+
for q in questions:
|
35 |
+
print(f"Running agent on task {q['task_id']}")
|
36 |
+
answer = run_agent_on_question(q)
|
37 |
+
answers.append({
|
38 |
+
"task_id": q["task_id"],
|
39 |
+
"submitted_answer": answer
|
40 |
+
})
|
41 |
+
|
42 |
+
username = get_hf_username()
|
43 |
+
code_link = get_code_link()
|
44 |
+
print(f"Submitting answers as {username} with code link {code_link}")
|
45 |
+
|
46 |
+
result = submit_answers(answers, username, code_link)
|
47 |
+
print(result)
|
48 |
+
return f"Score: {result.get('score', 0)}\nMessage: {result.get('message', 'No message')}"
|
49 |
|
50 |
+
with gr.Blocks() as demo:
|
51 |
+
gr.Markdown("## GAIA Agent Evaluation Space")
|
52 |
+
with gr.Row():
|
53 |
+
submit_btn = gr.Button("Run Evaluation & Submit All Answers")
|
54 |
+
output = gr.Textbox(label="Submission Result")
|
55 |
+
submit_btn.click(fn=run_and_submit, outputs=output)
|
56 |
|
57 |
+
demo.launch()
|
|
retriever.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
from typing import List
|
3 |
+
|
4 |
+
# Load context from a JSON file (make sure context.json is in the same directory)
|
5 |
+
try:
|
6 |
+
with open("context.json", "r") as f:
|
7 |
+
document_store = json.load(f)
|
8 |
+
except FileNotFoundError:
|
9 |
+
document_store = {}
|
10 |
+
|
11 |
+
def retrieve_context(task_id: str, question: str) -> List[str]:
|
12 |
+
"""
|
13 |
+
Retrieves relevant context using a local JSON context store.
|
14 |
+
|
15 |
+
Args:
|
16 |
+
task_id (str): The task ID from the GAIA question.
|
17 |
+
question (str): The actual question string (for fallback retrieval).
|
18 |
+
|
19 |
+
Returns:
|
20 |
+
List[str]: List of context strings.
|
21 |
+
"""
|
22 |
+
if task_id in document_store:
|
23 |
+
return [document_store[task_id]]
|
24 |
+
elif "Titanic" in question:
|
25 |
+
return ["Titanic was featured in The Last Voyage."]
|
26 |
+
else:
|
27 |
+
return ["Context not found. Please refer to web or document tools."]
|
submission.py
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# submission.py
|
2 |
+
|
3 |
+
import requests
|
4 |
+
import gradio as gr
|
5 |
+
from agent import run_agent_on_question
|
6 |
+
from utils import format_answer
|
7 |
+
|
8 |
+
API_BASE_URL = "https://agents-course-unit4-scoring.hf.space"
|
9 |
+
|
10 |
+
def fetch_questions():
|
11 |
+
"""
|
12 |
+
Retrieve all evaluation questions from the API.
|
13 |
+
"""
|
14 |
+
response = requests.get(f"{API_BASE_URL}/questions")
|
15 |
+
return response.json() if response.status_code == 200 else []
|
16 |
+
|
17 |
+
def submit_answers_to_leaderboard(username, agent_code_url):
|
18 |
+
"""
|
19 |
+
Runs the agent on all evaluation questions and submits answers.
|
20 |
+
"""
|
21 |
+
questions = fetch_questions()
|
22 |
+
print(f"Fetched {len(questions)} questions.")
|
23 |
+
|
24 |
+
answers = []
|
25 |
+
|
26 |
+
for q in questions:
|
27 |
+
print(f"\nπ Running agent on task: {q['task_id']}")
|
28 |
+
response = run_agent_on_question(q) # β
Pass full task dictionary
|
29 |
+
formatted_answer = format_answer(response)
|
30 |
+
|
31 |
+
print(f"Answer: {formatted_answer}")
|
32 |
+
answers.append({
|
33 |
+
"task_id": q["task_id"],
|
34 |
+
"submitted_answer": formatted_answer
|
35 |
+
})
|
36 |
+
|
37 |
+
# Prepare final submission payload
|
38 |
+
submission = {
|
39 |
+
"username": username,
|
40 |
+
"agent_code": agent_code_url,
|
41 |
+
"answers": answers
|
42 |
+
}
|
43 |
+
|
44 |
+
res = requests.post(f"{API_BASE_URL}/submit", json=submission)
|
45 |
+
if res.status_code == 200:
|
46 |
+
print("\nβ
Submission Complete!")
|
47 |
+
print("Result:", res.json())
|
48 |
+
return res.json()
|
49 |
+
else:
|
50 |
+
print("\nβ Submission Failed!")
|
51 |
+
print("Status Code:", res.status_code)
|
52 |
+
print("Response:", res.text)
|
53 |
+
return None
|
54 |
+
|
55 |
+
# Optional Gradio UI for easier submission
|
56 |
+
with gr.Blocks() as demo:
|
57 |
+
gr.Markdown("## π€ GAIA Agent Submission")
|
58 |
+
|
59 |
+
with gr.Row():
|
60 |
+
username = gr.Textbox(label="Your Hugging Face Username")
|
61 |
+
agent_code_url = gr.Textbox(label="Public URL to Your Hugging Face Space Code")
|
62 |
+
|
63 |
+
submit_btn = gr.Button("Run Evaluation & Submit All Answers")
|
64 |
+
|
65 |
+
output = gr.Textbox(label="Submission Result")
|
66 |
+
|
67 |
+
submit_btn.click(
|
68 |
+
fn=submit_answers_to_leaderboard,
|
69 |
+
inputs=[username, agent_code_url],
|
70 |
+
outputs=[output]
|
71 |
+
)
|
72 |
+
|
73 |
+
if __name__ == "__main__":
|
74 |
+
demo.launch()
|
tools.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
from smolagents import tool
|
3 |
+
|
4 |
+
def clean_answer_with_prompt(agent_output: str) -> str:
|
5 |
+
"""
|
6 |
+
Extracts and cleans the final answer from the agent output.
|
7 |
+
For GAIA, ensure no 'FINAL ANSWER:' prefix is returned β just the answer.
|
8 |
+
"""
|
9 |
+
if "FINAL ANSWER:" in agent_output:
|
10 |
+
return agent_output.split("FINAL ANSWER:")[-1].strip()
|
11 |
+
return agent_output.strip()
|
12 |
+
|
13 |
+
def build_prompt(question: str, context: str) -> str:
|
14 |
+
"""
|
15 |
+
Combine the system instruction, context, and question to build the LLM prompt.
|
16 |
+
"""
|
17 |
+
system_instruction = (
|
18 |
+
"You are an intelligent assistant helping answer complex real-world questions. "
|
19 |
+
"Use the provided context to reason and provide a concise factual answer. "
|
20 |
+
"Only answer what is asked. Do not include 'FINAL ANSWER:' or extra explanation.\n\n"
|
21 |
+
)
|
22 |
+
return f"{system_instruction}Context:\n{context}\n\nQuestion: {question}\nAnswer:"
|
23 |
+
|
24 |
+
@tool
|
25 |
+
def greeting_tool(name: str) -> str:
|
26 |
+
"""
|
27 |
+
Generates a custom greeting for the guest.
|
28 |
+
|
29 |
+
Args:
|
30 |
+
name: Name of the guest
|
31 |
+
|
32 |
+
Returns:
|
33 |
+
A friendly greeting message.
|
34 |
+
"""
|
35 |
+
return f"Welcome to the gala, {name}! We're honored to have you with us."
|
utils.py
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import requests
|
2 |
+
import os
|
3 |
+
import json
|
4 |
+
|
5 |
+
# API base URL
|
6 |
+
BASE_URL = "https://agents-course-unit4-scoring.hf.space"
|
7 |
+
|
8 |
+
|
9 |
+
|
10 |
+
|
11 |
+
import os
|
12 |
+
|
13 |
+
def get_hf_username():
|
14 |
+
"""
|
15 |
+
Gets Hugging Face username for submission.
|
16 |
+
"""
|
17 |
+
return os.environ.get("HF_USERNAME", "shrutikaP8497") # replace with your HF username
|
18 |
+
|
19 |
+
def get_code_link():
|
20 |
+
"""
|
21 |
+
Returns the public URL to the Hugging Face Space code.
|
22 |
+
"""
|
23 |
+
return "https://huggingface.co/spaces/shrutikaP8497/gaia_agent_code"
|
24 |
+
|
25 |
+
|
26 |
+
def download_task_file(task_id, save_dir="downloads"):
|
27 |
+
"""
|
28 |
+
Downloads a file associated with a task from the GAIA evaluation API.
|
29 |
+
"""
|
30 |
+
os.makedirs(save_dir, exist_ok=True)
|
31 |
+
url = f"{BASE_URL}/files/{task_id}"
|
32 |
+
response = requests.get(url)
|
33 |
+
|
34 |
+
if response.status_code == 200:
|
35 |
+
filename = os.path.join(save_dir, task_id)
|
36 |
+
with open(filename, "wb") as f:
|
37 |
+
f.write(response.content)
|
38 |
+
return filename
|
39 |
+
else:
|
40 |
+
print(f"Failed to download file for task {task_id}")
|
41 |
+
return None
|
42 |
+
|
43 |
+
|
44 |
+
def format_answer(agent_output):
|
45 |
+
"""
|
46 |
+
Format the agent's response to meet submission requirements:
|
47 |
+
- Do NOT include 'FINAL ANSWER'
|
48 |
+
- Must be a concise string or comma-separated list
|
49 |
+
"""
|
50 |
+
if isinstance(agent_output, str):
|
51 |
+
return agent_output.strip()
|
52 |
+
elif isinstance(agent_output, list):
|
53 |
+
return ", ".join(map(str, agent_output))
|
54 |
+
elif isinstance(agent_output, (int, float)):
|
55 |
+
return str(agent_output)
|
56 |
+
else:
|
57 |
+
return str(agent_output)
|
58 |
+
|
59 |
+
|
60 |
+
def log_submission(task_id, answer, reasoning_trace=None, save_path="submission_log.jsonl"):
|
61 |
+
"""
|
62 |
+
Log the task_id and answer for debugging/submission traceability.
|
63 |
+
"""
|
64 |
+
entry = {
|
65 |
+
"task_id": task_id,
|
66 |
+
"submitted_answer": answer,
|
67 |
+
}
|
68 |
+
if reasoning_trace:
|
69 |
+
entry["reasoning_trace"] = reasoning_trace
|
70 |
+
|
71 |
+
with open(save_path, "a") as f:
|
72 |
+
f.write(json.dumps(entry) + "\n")
|