Files changed (5) hide show
  1. app.py +49 -188
  2. retriever.py +27 -0
  3. submission.py +74 -0
  4. tools.py +35 -0
  5. utils.py +72 -0
app.py CHANGED
@@ -1,196 +1,57 @@
1
- import os
2
  import gradio as gr
3
  import requests
4
- import inspect
5
- import pandas as pd
6
-
7
- # (Keep Constants as is)
8
- # --- Constants ---
9
- DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
10
-
11
- # --- Basic Agent Definition ---
12
- # ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
13
- class BasicAgent:
14
- def __init__(self):
15
- print("BasicAgent initialized.")
16
- def __call__(self, question: str) -> str:
17
- print(f"Agent received question (first 50 chars): {question[:50]}...")
18
- fixed_answer = "This is a default answer."
19
- print(f"Agent returning fixed answer: {fixed_answer}")
20
- return fixed_answer
21
-
22
- def run_and_submit_all( profile: gr.OAuthProfile | None):
23
- """
24
- Fetches all questions, runs the BasicAgent on them, submits all answers,
25
- and displays the results.
26
- """
27
- # --- Determine HF Space Runtime URL and Repo URL ---
28
- space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
29
-
30
- if profile:
31
- username= f"{profile.username}"
32
- print(f"User logged in: {username}")
33
- else:
34
- print("User not logged in.")
35
- return "Please Login to Hugging Face with the button.", None
36
-
37
- api_url = DEFAULT_API_URL
38
- questions_url = f"{api_url}/questions"
39
- submit_url = f"{api_url}/submit"
40
-
41
- # 1. Instantiate Agent ( modify this part to create your agent)
42
- try:
43
- agent = BasicAgent()
44
- except Exception as e:
45
- print(f"Error instantiating agent: {e}")
46
- return f"Error initializing agent: {e}", None
47
- # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
48
- agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
49
- print(agent_code)
50
-
51
- # 2. Fetch Questions
52
- print(f"Fetching questions from: {questions_url}")
53
- try:
54
- response = requests.get(questions_url, timeout=15)
55
- response.raise_for_status()
56
- questions_data = response.json()
57
- if not questions_data:
58
- print("Fetched questions list is empty.")
59
- return "Fetched questions list is empty or invalid format.", None
60
- print(f"Fetched {len(questions_data)} questions.")
61
- except requests.exceptions.RequestException as e:
62
- print(f"Error fetching questions: {e}")
63
- return f"Error fetching questions: {e}", None
64
- except requests.exceptions.JSONDecodeError as e:
65
- print(f"Error decoding JSON response from questions endpoint: {e}")
66
- print(f"Response text: {response.text[:500]}")
67
- return f"Error decoding server response for questions: {e}", None
68
- except Exception as e:
69
- print(f"An unexpected error occurred fetching questions: {e}")
70
- return f"An unexpected error occurred fetching questions: {e}", None
71
-
72
- # 3. Run your Agent
73
- results_log = []
74
- answers_payload = []
75
- print(f"Running agent on {len(questions_data)} questions...")
76
- for item in questions_data:
77
- task_id = item.get("task_id")
78
- question_text = item.get("question")
79
- if not task_id or question_text is None:
80
- print(f"Skipping item with missing task_id or question: {item}")
81
- continue
82
- try:
83
- submitted_answer = agent(question_text)
84
- answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
85
- results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
86
- except Exception as e:
87
- print(f"Error running agent on task {task_id}: {e}")
88
- results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
89
-
90
- if not answers_payload:
91
- print("Agent did not produce any answers to submit.")
92
- return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
93
-
94
- # 4. Prepare Submission
95
- submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
96
- status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
97
- print(status_update)
98
-
99
- # 5. Submit
100
- print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
101
- try:
102
- response = requests.post(submit_url, json=submission_data, timeout=60)
103
- response.raise_for_status()
104
- result_data = response.json()
105
- final_status = (
106
- f"Submission Successful!\n"
107
- f"User: {result_data.get('username')}\n"
108
- f"Overall Score: {result_data.get('score', 'N/A')}% "
109
- f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
110
- f"Message: {result_data.get('message', 'No message received.')}"
111
- )
112
- print("Submission successful.")
113
- results_df = pd.DataFrame(results_log)
114
- return final_status, results_df
115
- except requests.exceptions.HTTPError as e:
116
- error_detail = f"Server responded with status {e.response.status_code}."
117
- try:
118
- error_json = e.response.json()
119
- error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
120
- except requests.exceptions.JSONDecodeError:
121
- error_detail += f" Response: {e.response.text[:500]}"
122
- status_message = f"Submission Failed: {error_detail}"
123
- print(status_message)
124
- results_df = pd.DataFrame(results_log)
125
- return status_message, results_df
126
- except requests.exceptions.Timeout:
127
- status_message = "Submission Failed: The request timed out."
128
- print(status_message)
129
- results_df = pd.DataFrame(results_log)
130
- return status_message, results_df
131
- except requests.exceptions.RequestException as e:
132
- status_message = f"Submission Failed: Network error - {e}"
133
- print(status_message)
134
- results_df = pd.DataFrame(results_log)
135
- return status_message, results_df
136
- except Exception as e:
137
- status_message = f"An unexpected error occurred during submission: {e}"
138
- print(status_message)
139
- results_df = pd.DataFrame(results_log)
140
- return status_message, results_df
141
-
142
-
143
- # --- Build Gradio Interface using Blocks ---
144
- with gr.Blocks() as demo:
145
- gr.Markdown("# Basic Agent Evaluation Runner")
146
- gr.Markdown(
147
- """
148
- **Instructions:**
149
-
150
- 1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
151
- 2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
152
- 3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
153
-
154
- ---
155
- **Disclaimers:**
156
- Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
157
- This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
158
- """
159
- )
160
-
161
- gr.LoginButton()
162
-
163
- run_button = gr.Button("Run Evaluation & Submit All Answers")
164
-
165
- status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
166
- # Removed max_rows=10 from DataFrame constructor
167
- results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
168
-
169
- run_button.click(
170
- fn=run_and_submit_all,
171
- outputs=[status_output, results_table]
172
- )
173
 
174
- if __name__ == "__main__":
175
- print("\n" + "-"*30 + " App Starting " + "-"*30)
176
- # Check for SPACE_HOST and SPACE_ID at startup for information
177
- space_host_startup = os.getenv("SPACE_HOST")
178
- space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
179
 
180
- if space_host_startup:
181
- print(f"βœ… SPACE_HOST found: {space_host_startup}")
182
- print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
 
183
  else:
184
- print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
185
-
186
- if space_id_startup: # Print repo URLs if SPACE_ID is found
187
- print(f"βœ… SPACE_ID found: {space_id_startup}")
188
- print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
189
- print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
 
 
 
 
 
190
  else:
191
- print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
192
 
193
- print("-"*(60 + len(" App Starting ")) + "\n")
 
 
 
 
 
194
 
195
- print("Launching Gradio Interface for Basic Agent Evaluation...")
196
- demo.launch(debug=True, share=False)
 
 
1
  import gradio as gr
2
  import requests
3
+ import os
4
+ from agent import run_agent_on_question
5
+ from utils import get_hf_username, get_code_link
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6
 
7
+ API_BASE = "https://agents-course-unit4-scoring.hf.space"
 
 
 
 
8
 
9
+ def fetch_questions():
10
+ response = requests.get(f"{API_BASE}/questions")
11
+ if response.status_code == 200:
12
+ return response.json()
13
  else:
14
+ return []
15
+
16
+ def submit_answers(answers, username, code_link):
17
+ payload = {
18
+ "username": username,
19
+ "agent_code": code_link,
20
+ "answers": answers
21
+ }
22
+ response = requests.post(f"{API_BASE}/submit", json=payload)
23
+ if response.status_code == 200:
24
+ return response.json()
25
  else:
26
+ return {"message": "Submission failed.", "score": 0}
27
+
28
+ def run_and_submit():
29
+ print("Fetching questions...")
30
+ questions = fetch_questions()
31
+ print(f"Fetched {len(questions)} questions")
32
+
33
+ answers = []
34
+ for q in questions:
35
+ print(f"Running agent on task {q['task_id']}")
36
+ answer = run_agent_on_question(q)
37
+ answers.append({
38
+ "task_id": q["task_id"],
39
+ "submitted_answer": answer
40
+ })
41
+
42
+ username = get_hf_username()
43
+ code_link = get_code_link()
44
+ print(f"Submitting answers as {username} with code link {code_link}")
45
+
46
+ result = submit_answers(answers, username, code_link)
47
+ print(result)
48
+ return f"Score: {result.get('score', 0)}\nMessage: {result.get('message', 'No message')}"
49
 
50
+ with gr.Blocks() as demo:
51
+ gr.Markdown("## GAIA Agent Evaluation Space")
52
+ with gr.Row():
53
+ submit_btn = gr.Button("Run Evaluation & Submit All Answers")
54
+ output = gr.Textbox(label="Submission Result")
55
+ submit_btn.click(fn=run_and_submit, outputs=output)
56
 
57
+ demo.launch()
 
retriever.py ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ from typing import List
3
+
4
+ # Load context from a JSON file (make sure context.json is in the same directory)
5
+ try:
6
+ with open("context.json", "r") as f:
7
+ document_store = json.load(f)
8
+ except FileNotFoundError:
9
+ document_store = {}
10
+
11
+ def retrieve_context(task_id: str, question: str) -> List[str]:
12
+ """
13
+ Retrieves relevant context using a local JSON context store.
14
+
15
+ Args:
16
+ task_id (str): The task ID from the GAIA question.
17
+ question (str): The actual question string (for fallback retrieval).
18
+
19
+ Returns:
20
+ List[str]: List of context strings.
21
+ """
22
+ if task_id in document_store:
23
+ return [document_store[task_id]]
24
+ elif "Titanic" in question:
25
+ return ["Titanic was featured in The Last Voyage."]
26
+ else:
27
+ return ["Context not found. Please refer to web or document tools."]
submission.py ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # submission.py
2
+
3
+ import requests
4
+ import gradio as gr
5
+ from agent import run_agent_on_question
6
+ from utils import format_answer
7
+
8
+ API_BASE_URL = "https://agents-course-unit4-scoring.hf.space"
9
+
10
+ def fetch_questions():
11
+ """
12
+ Retrieve all evaluation questions from the API.
13
+ """
14
+ response = requests.get(f"{API_BASE_URL}/questions")
15
+ return response.json() if response.status_code == 200 else []
16
+
17
+ def submit_answers_to_leaderboard(username, agent_code_url):
18
+ """
19
+ Runs the agent on all evaluation questions and submits answers.
20
+ """
21
+ questions = fetch_questions()
22
+ print(f"Fetched {len(questions)} questions.")
23
+
24
+ answers = []
25
+
26
+ for q in questions:
27
+ print(f"\nπŸ” Running agent on task: {q['task_id']}")
28
+ response = run_agent_on_question(q) # βœ… Pass full task dictionary
29
+ formatted_answer = format_answer(response)
30
+
31
+ print(f"Answer: {formatted_answer}")
32
+ answers.append({
33
+ "task_id": q["task_id"],
34
+ "submitted_answer": formatted_answer
35
+ })
36
+
37
+ # Prepare final submission payload
38
+ submission = {
39
+ "username": username,
40
+ "agent_code": agent_code_url,
41
+ "answers": answers
42
+ }
43
+
44
+ res = requests.post(f"{API_BASE_URL}/submit", json=submission)
45
+ if res.status_code == 200:
46
+ print("\nβœ… Submission Complete!")
47
+ print("Result:", res.json())
48
+ return res.json()
49
+ else:
50
+ print("\n❌ Submission Failed!")
51
+ print("Status Code:", res.status_code)
52
+ print("Response:", res.text)
53
+ return None
54
+
55
+ # Optional Gradio UI for easier submission
56
+ with gr.Blocks() as demo:
57
+ gr.Markdown("## πŸ€– GAIA Agent Submission")
58
+
59
+ with gr.Row():
60
+ username = gr.Textbox(label="Your Hugging Face Username")
61
+ agent_code_url = gr.Textbox(label="Public URL to Your Hugging Face Space Code")
62
+
63
+ submit_btn = gr.Button("Run Evaluation & Submit All Answers")
64
+
65
+ output = gr.Textbox(label="Submission Result")
66
+
67
+ submit_btn.click(
68
+ fn=submit_answers_to_leaderboard,
69
+ inputs=[username, agent_code_url],
70
+ outputs=[output]
71
+ )
72
+
73
+ if __name__ == "__main__":
74
+ demo.launch()
tools.py ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ from smolagents import tool
3
+
4
+ def clean_answer_with_prompt(agent_output: str) -> str:
5
+ """
6
+ Extracts and cleans the final answer from the agent output.
7
+ For GAIA, ensure no 'FINAL ANSWER:' prefix is returned β€” just the answer.
8
+ """
9
+ if "FINAL ANSWER:" in agent_output:
10
+ return agent_output.split("FINAL ANSWER:")[-1].strip()
11
+ return agent_output.strip()
12
+
13
+ def build_prompt(question: str, context: str) -> str:
14
+ """
15
+ Combine the system instruction, context, and question to build the LLM prompt.
16
+ """
17
+ system_instruction = (
18
+ "You are an intelligent assistant helping answer complex real-world questions. "
19
+ "Use the provided context to reason and provide a concise factual answer. "
20
+ "Only answer what is asked. Do not include 'FINAL ANSWER:' or extra explanation.\n\n"
21
+ )
22
+ return f"{system_instruction}Context:\n{context}\n\nQuestion: {question}\nAnswer:"
23
+
24
+ @tool
25
+ def greeting_tool(name: str) -> str:
26
+ """
27
+ Generates a custom greeting for the guest.
28
+
29
+ Args:
30
+ name: Name of the guest
31
+
32
+ Returns:
33
+ A friendly greeting message.
34
+ """
35
+ return f"Welcome to the gala, {name}! We're honored to have you with us."
utils.py ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import requests
2
+ import os
3
+ import json
4
+
5
+ # API base URL
6
+ BASE_URL = "https://agents-course-unit4-scoring.hf.space"
7
+
8
+
9
+
10
+
11
+ import os
12
+
13
+ def get_hf_username():
14
+ """
15
+ Gets Hugging Face username for submission.
16
+ """
17
+ return os.environ.get("HF_USERNAME", "shrutikaP8497") # replace with your HF username
18
+
19
+ def get_code_link():
20
+ """
21
+ Returns the public URL to the Hugging Face Space code.
22
+ """
23
+ return "https://huggingface.co/spaces/shrutikaP8497/gaia_agent_code"
24
+
25
+
26
+ def download_task_file(task_id, save_dir="downloads"):
27
+ """
28
+ Downloads a file associated with a task from the GAIA evaluation API.
29
+ """
30
+ os.makedirs(save_dir, exist_ok=True)
31
+ url = f"{BASE_URL}/files/{task_id}"
32
+ response = requests.get(url)
33
+
34
+ if response.status_code == 200:
35
+ filename = os.path.join(save_dir, task_id)
36
+ with open(filename, "wb") as f:
37
+ f.write(response.content)
38
+ return filename
39
+ else:
40
+ print(f"Failed to download file for task {task_id}")
41
+ return None
42
+
43
+
44
+ def format_answer(agent_output):
45
+ """
46
+ Format the agent's response to meet submission requirements:
47
+ - Do NOT include 'FINAL ANSWER'
48
+ - Must be a concise string or comma-separated list
49
+ """
50
+ if isinstance(agent_output, str):
51
+ return agent_output.strip()
52
+ elif isinstance(agent_output, list):
53
+ return ", ".join(map(str, agent_output))
54
+ elif isinstance(agent_output, (int, float)):
55
+ return str(agent_output)
56
+ else:
57
+ return str(agent_output)
58
+
59
+
60
+ def log_submission(task_id, answer, reasoning_trace=None, save_path="submission_log.jsonl"):
61
+ """
62
+ Log the task_id and answer for debugging/submission traceability.
63
+ """
64
+ entry = {
65
+ "task_id": task_id,
66
+ "submitted_answer": answer,
67
+ }
68
+ if reasoning_trace:
69
+ entry["reasoning_trace"] = reasoning_trace
70
+
71
+ with open(save_path, "a") as f:
72
+ f.write(json.dumps(entry) + "\n")