Spaces:
Sleeping
Sleeping
Alexandra Zapko-Willmes
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,42 +1,32 @@
|
|
1 |
import gradio as gr
|
|
|
2 |
import pandas as pd
|
3 |
import io
|
4 |
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
# Model lists
|
9 |
-
zero_shot_models = {
|
10 |
"EN: deberta-v3-large-zeroshot": "MoritzLaurer/deberta-v3-large-zeroshot-v2.0",
|
11 |
-
"MULTI: mDeBERTa-v3-
|
12 |
"MULTI: xlm-roberta-large-xnli": "joeddav/xlm-roberta-large-xnli"
|
13 |
}
|
14 |
|
15 |
-
text_gen_models = {
|
16 |
-
"Mixtral-8x7B-Instruct": "mistralai/Mixtral-8x7B-Instruct-v0.1",
|
17 |
-
"DeepSeek-Qwen3-8B": "deepseek-ai/DeepSeek-R1-0528-Qwen3-8B",
|
18 |
-
"DeepSeek-52B": "deepseek-ai/DeepSeek-R1-0528",
|
19 |
-
"LLaMA-3.1-8B-Instruct": "meta-llama/Llama-3.1-8B-Instruct"
|
20 |
-
}
|
21 |
-
|
22 |
-
# Shared storage for results
|
23 |
response_table = []
|
24 |
|
25 |
-
def
|
26 |
-
labels = [
|
27 |
questions = [q.strip() for q in questions_text.split("\n") if q.strip()]
|
28 |
if not labels or not questions:
|
29 |
-
return "Please enter both
|
30 |
|
31 |
-
classifier = pipeline("zero-shot-classification", model=
|
32 |
global response_table
|
33 |
response_table = []
|
34 |
output_lines = []
|
35 |
|
36 |
for i, question in enumerate(questions, 1):
|
37 |
result = classifier(question, labels, multi_label=False)
|
38 |
-
row = {"Item #": i, "Item": question}
|
39 |
output_lines.append(f"{i}. {question}")
|
|
|
40 |
for label, score in zip(result["labels"], result["scores"]):
|
41 |
row[label] = round(score, 3)
|
42 |
output_lines.append(f"→ {label}: {round(score, 3)}")
|
@@ -45,68 +35,25 @@ def run_classification(questions_text, labels_text, model_name):
|
|
45 |
|
46 |
return "\n".join(output_lines), None
|
47 |
|
48 |
-
def run_generation(questions_text, model_name):
|
49 |
-
questions = [q.strip() for q in questions_text.split("\n") if q.strip()]
|
50 |
-
if not questions:
|
51 |
-
return "Please enter at least one item.", None
|
52 |
-
|
53 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
54 |
-
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32)
|
55 |
-
model.eval()
|
56 |
-
|
57 |
-
global response_table
|
58 |
-
response_table = []
|
59 |
-
output_lines = []
|
60 |
-
|
61 |
-
for i, question in enumerate(questions, 1):
|
62 |
-
prompt = f"Please respond to the following item as if you were a survey participant:\n\"{question}\""
|
63 |
-
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
64 |
-
outputs = model.generate(**inputs, max_new_tokens=60)
|
65 |
-
response = tokenizer.decode(outputs[0], skip_special_tokens=True).split("\n")[-1]
|
66 |
-
output_lines.append(f"{i}. {question}\n→ {response.strip()}\n")
|
67 |
-
response_table.append({"Item #": i, "Item": question, "Response": response.strip()})
|
68 |
-
|
69 |
-
return "\n".join(output_lines), None
|
70 |
-
|
71 |
def download_csv():
|
72 |
-
if not response_table:
|
73 |
-
return None
|
74 |
df = pd.DataFrame(response_table)
|
75 |
-
|
76 |
-
df.to_csv(
|
77 |
-
return
|
78 |
|
79 |
with gr.Blocks() as demo:
|
80 |
-
gr.Markdown("
|
81 |
-
gr.Markdown("
|
82 |
-
|
83 |
-
task_type = gr.Radio(["Zero-shot classification", "Text generation"], label="Task Type", value="Zero-shot classification")
|
84 |
-
|
85 |
-
with gr.Row():
|
86 |
-
model_selector = gr.Dropdown(label="Choose Model")
|
87 |
-
labels_input = gr.Textbox(label="Response Options (comma-separated)", visible=True)
|
88 |
|
|
|
|
|
89 |
questions_input = gr.Textbox(label="Questionnaire Items (one per line)", lines=10)
|
90 |
output_box = gr.Textbox(label="Model Output", lines=20)
|
91 |
-
|
92 |
download_btn = gr.Button("📥 Download CSV")
|
93 |
-
|
94 |
-
|
95 |
-
def update_model_and_labels(task):
|
96 |
-
if task == "Zero-shot classification":
|
97 |
-
return gr.Dropdown.update(choices=list(zero_shot_models.keys()), value=list(zero_shot_models.keys())[0]), gr.Textbox.update(visible=True)
|
98 |
-
else:
|
99 |
-
return gr.Dropdown.update(choices=list(text_gen_models.keys()), value=list(text_gen_models.keys())[0]), gr.Textbox.update(visible=False)
|
100 |
-
|
101 |
-
task_type.change(fn=update_model_and_labels, inputs=task_type, outputs=[model_selector, labels_input])
|
102 |
-
|
103 |
-
def route_task(questions, labels, model_ui_name, task):
|
104 |
-
if task == "Zero-shot classification":
|
105 |
-
return run_classification(questions, labels, zero_shot_models[model_ui_name])
|
106 |
-
else:
|
107 |
-
return run_generation(questions, text_gen_models[model_ui_name])
|
108 |
|
109 |
-
|
110 |
-
download_btn.click(fn=download_csv, inputs=[], outputs=
|
111 |
|
112 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import pipeline
|
3 |
import pandas as pd
|
4 |
import io
|
5 |
|
6 |
+
# Define available classification models
|
7 |
+
models = {
|
|
|
|
|
|
|
8 |
"EN: deberta-v3-large-zeroshot": "MoritzLaurer/deberta-v3-large-zeroshot-v2.0",
|
9 |
+
"MULTI: mDeBERTa-v3-xnli": "MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7",
|
10 |
"MULTI: xlm-roberta-large-xnli": "joeddav/xlm-roberta-large-xnli"
|
11 |
}
|
12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
response_table = []
|
14 |
|
15 |
+
def classify(questions_text, labels_text, model_choice):
|
16 |
+
labels = [l.strip() for l in labels_text.split(",") if l.strip()]
|
17 |
questions = [q.strip() for q in questions_text.split("\n") if q.strip()]
|
18 |
if not labels or not questions:
|
19 |
+
return "Please enter both questions and labels.", None
|
20 |
|
21 |
+
classifier = pipeline("zero-shot-classification", model=models[model_choice])
|
22 |
global response_table
|
23 |
response_table = []
|
24 |
output_lines = []
|
25 |
|
26 |
for i, question in enumerate(questions, 1):
|
27 |
result = classifier(question, labels, multi_label=False)
|
|
|
28 |
output_lines.append(f"{i}. {question}")
|
29 |
+
row = {"Item #": i, "Item": question}
|
30 |
for label, score in zip(result["labels"], result["scores"]):
|
31 |
row[label] = round(score, 3)
|
32 |
output_lines.append(f"→ {label}: {round(score, 3)}")
|
|
|
35 |
|
36 |
return "\n".join(output_lines), None
|
37 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
def download_csv():
|
|
|
|
|
39 |
df = pd.DataFrame(response_table)
|
40 |
+
buffer = io.StringIO()
|
41 |
+
df.to_csv(buffer, index=False)
|
42 |
+
return buffer.getvalue()
|
43 |
|
44 |
with gr.Blocks() as demo:
|
45 |
+
gr.Markdown("## 🧠 Zero-Shot Classification Interface")
|
46 |
+
gr.Markdown("Enter questionnaire items and response options. The selected model will return probabilities for each label.")
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
+
model_dropdown = gr.Dropdown(choices=list(models.keys()), label="Choose Classification Model")
|
49 |
+
labels_input = gr.Textbox(label="Response Options (comma-separated)", placeholder="Strongly disagree, Disagree, Neutral, Agree, Strongly agree")
|
50 |
questions_input = gr.Textbox(label="Questionnaire Items (one per line)", lines=10)
|
51 |
output_box = gr.Textbox(label="Model Output", lines=20)
|
52 |
+
run_btn = gr.Button("Run Classification")
|
53 |
download_btn = gr.Button("📥 Download CSV")
|
54 |
+
csv_file = gr.File(label="CSV", visible=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
+
run_btn.click(fn=classify, inputs=[questions_input, labels_input, model_dropdown], outputs=[output_box, csv_file])
|
57 |
+
download_btn.click(fn=download_csv, inputs=[], outputs=csv_file)
|
58 |
|
59 |
demo.launch()
|