FastVLM-YoloV8n-v2 / src /components /MultiSourceCaptioningView.tsx
Quazim0t0's picture
Upload 51 files
b7c497f verified
import * as React from "react";
import { useState, useRef, useEffect } from "react";
import { useVLMContext } from "../context/useVLMContext";
import { drawBoundingBoxesOnCanvas } from "./BoxAnnotator";
const MODES = ["File"] as const;
type Mode = typeof MODES[number];
const EXAMPLE_VIDEO_URL = "https://huggingface.co/Quazim0t0/yolov8-onnx/resolve/main/sample.mp4";
const EXAMPLE_PROMPT = "Describe the video";
function isImageFile(file: File) {
return file.type.startsWith("image/");
}
function isVideoFile(file: File) {
return file.type.startsWith("video/");
}
function denormalizeBox(box: number[], width: number, height: number) {
// If all values are between 0 and 1, treat as normalized
if (box.length === 4 && box.every(v => v >= 0 && v <= 1)) {
return [
box[0] * width,
box[1] * height,
box[2] * width,
box[3] * height
];
}
return box;
}
// Add this robust fallback parser near the top
function extractAllBoundingBoxes(output: string): { label: string, bbox_2d: number[] }[] {
// Try to parse as JSON first
try {
const parsed = JSON.parse(output);
if (Array.isArray(parsed)) {
const result: { label: string, bbox_2d: number[] }[] = [];
for (const obj of parsed) {
if (obj && obj.label && Array.isArray(obj.bbox_2d)) {
if (Array.isArray(obj.bbox_2d[0])) {
for (const arr of obj.bbox_2d) {
if (Array.isArray(arr) && arr.length === 4) {
result.push({ label: obj.label, bbox_2d: arr });
}
}
} else if (obj.bbox_2d.length === 4) {
result.push({ label: obj.label, bbox_2d: obj.bbox_2d });
}
}
}
if (result.length > 0) return result;
}
} catch (e) {}
// Fallback: extract all [x1, y1, x2, y2] arrays from the string
const boxRegex = /\[\s*([0-9.]+)\s*,\s*([0-9.]+)\s*,\s*([0-9.]+)\s*,\s*([0-9.]+)\s*\]/g;
const boxes: { label: string, bbox_2d: number[] }[] = [];
let match;
while ((match = boxRegex.exec(output)) !== null) {
const arr = [parseFloat(match[1]), parseFloat(match[2]), parseFloat(match[3]), parseFloat(match[4])];
boxes.push({ label: '', bbox_2d: arr });
}
return boxes;
}
// NOTE: You must install onnxruntime-web:
// npm install onnxruntime-web
// @ts-ignore
import * as ort from 'onnxruntime-web';
// If you still get type errors, add a global.d.ts with: declare module 'onnxruntime-web';
// Set your YOLOv8 ONNX model URL here:
const YOLOV8_ONNX_URL = "https://huggingface.co/Quazim0t0/yolov8-onnx/resolve/main/yolov8n.onnx"; // <-- PUT YOUR ONNX FILE URL HERE
// Add these constants to match the YOLOv8 input size
const YOLOV8_INPUT_WIDTH = 640;
const YOLOV8_INPUT_HEIGHT = 480;
// 1. Load the ONNX model once
let yoloSession: ort.InferenceSession | null = null;
// Add a busy flag to prevent concurrent YOLOv8 inferences
let isYoloBusy = false;
async function loadYoloModel() {
if (!yoloSession) {
yoloSession = await ort.InferenceSession.create(YOLOV8_ONNX_URL);
}
return yoloSession;
}
// COCO class names for YOLOv8
const YOLO_CLASSES: string[] = [
"person", "bicycle", "car", "motorcycle", "airplane", "bus", "train", "truck", "boat", "traffic light",
"fire hydrant", "stop sign", "parking meter", "bench", "bird", "cat", "dog", "horse", "sheep", "cow",
"elephant", "bear", "zebra", "giraffe", "backpack", "umbrella", "handbag", "tie", "suitcase", "frisbee",
"skis", "snowboard", "sports ball", "kite", "baseball bat", "baseball glove", "skateboard", "surfboard", "tennis racket", "bottle",
"wine glass", "cup", "fork", "knife", "spoon", "bowl", "banana", "apple", "sandwich", "orange",
"broccoli", "carrot", "hot dog", "pizza", "donut", "cake", "chair", "couch", "potted plant", "bed",
"dining table", "toilet", "tv", "laptop", "mouse", "remote", "keyboard", "cell phone", "microwave", "oven",
"toaster", "sink", "refrigerator", "book", "clock", "vase", "scissors", "teddy bear", "hair drier", "toothbrush"
];
// Preprocess video frame to YOLOv8 input tensor [1,3,640,640]
function preprocessFrameToTensor(video: HTMLVideoElement): ort.Tensor {
const width = 640;
const height = 480;
const canvas = document.createElement('canvas');
canvas.width = width;
canvas.height = height;
const ctx = canvas.getContext('2d');
if (!ctx) throw new Error('Could not get 2D context');
ctx.drawImage(video, 0, 0, width, height);
const imageData = ctx.getImageData(0, 0, width, height);
const { data } = imageData;
// Convert to Float32Array [1,3,480,640], normalize to [0,1]
const floatData = new Float32Array(1 * 3 * height * width);
for (let i = 0; i < width * height; i++) {
floatData[i] = data[i * 4] / 255; // R
floatData[i + width * height] = data[i * 4 + 1] / 255; // G
floatData[i + 2 * width * height] = data[i * 4 + 2] / 255; // B
}
return new ort.Tensor('float32', floatData, [1, 3, height, width]);
}
// Update postprocessYoloOutput to remove unused inputWidth and inputHeight parameters
function postprocessYoloOutput(output: ort.Tensor) {
// output.dims: [1, num_detections, 6]
const data = output.data;
const numDetections = output.dims[1];
const results = [];
for (let i = 0; i < numDetections; i++) {
const offset = i * 6;
const x1 = data[offset];
const y1 = data[offset + 1];
const x2 = data[offset + 2];
const y2 = data[offset + 3];
const score = data[offset + 4];
const classId = data[offset + 5];
if (score < 0.2) continue; // adjust threshold as needed
results.push({
bbox: [x1, y1, x2, y2],
label: YOLO_CLASSES[classId] || `class_${classId}`,
score
});
}
return results;
}
// Helper type guard for annotation
function hasAnnotation(obj: any): obj is { annotation: string } {
return typeof obj === 'object' && obj !== null && 'annotation' in obj && typeof obj.annotation === 'string';
}
export default function MultiSourceCaptioningView() {
const [mode, setMode] = useState<Mode>("File");
const [videoUrl] = useState<string>(EXAMPLE_VIDEO_URL);
const [prompt, setPrompt] = useState<string>(EXAMPLE_PROMPT);
const [processing, setProcessing] = useState(false);
const [error, setError] = useState<string | null>(null);
const [uploadedFile, setUploadedFile] = useState<File | null>(null);
const [uploadedUrl, setUploadedUrl] = useState<string>("");
const [videoProcessing, setVideoProcessing] = useState(false);
const [imageProcessed, setImageProcessed] = useState(false);
const [exampleProcessing, setExampleProcessing] = useState(false);
const [debugOutput, setDebugOutput] = useState<string>("");
const [canvasDims, setCanvasDims] = useState<{w:number,h:number}|null>(null);
const [videoDims, setVideoDims] = useState<{w:number,h:number}|null>(null);
const [inferenceStatus, setInferenceStatus] = useState<string>("");
const [showProcessingVideo, setShowProcessingVideo] = useState(false);
const videoRef = useRef<HTMLVideoElement | null>(null);
const overlayVideoRef = useRef<HTMLVideoElement | null>(null);
const processingVideoRef = useRef<HTMLVideoElement | null>(null);
const canvasRef = useRef<HTMLCanvasElement | null>(null);
const imageRef = useRef<HTMLImageElement | null>(null);
const boxHistoryRef = useRef<any[]>([]);
// Add a ref to store the latest YOLOv8 results (with optional FastVLM annotation)
const lastYoloBoxesRef = React.useRef<any[]>([]);
const { isLoaded, isLoading, error: modelError, runInference } = useVLMContext();
// Remove videoProcessingRef and exampleProcessingRef
// Add a single processingLoopRef
const processingLoopRef = React.useRef(false);
const processVideoLoop = async () => {
if (!processingLoopRef.current) return;
if (isYoloBusy) {
// Optionally log: "Inference already running, skipping frame"
requestAnimationFrame(processVideoLoop);
return;
}
await yoloDetectionLoop(); // Replaced processVideoFrame with yoloDetectionLoop
// Schedule the next frame as soon as possible
requestAnimationFrame(processVideoLoop);
};
const processExampleLoop = async () => {
while (processingLoopRef.current) {
await yoloDetectionLoop(); // Replaced processVideoFrame with yoloDetectionLoop
await new Promise(res => setTimeout(res, 1000));
}
};
// Set your YOLOv8 ONNX backend API endpoint here:
// const YOLOV8_API_URL = "https://YOUR_YOLOV8_BACKEND_URL_HERE/detect"; // <-- PUT YOUR ENDPOINT HERE
// Add this useEffect for overlay video synchronization
useEffect(() => {
const main = videoRef.current;
const overlay = overlayVideoRef.current;
if (!main || !overlay) return;
// Sync play/pause
const onPlay = () => { if (overlay.paused) overlay.play(); };
const onPause = () => { if (!overlay.paused) overlay.pause(); };
// Sync seeking and time
const onSeekOrTime = () => {
if (Math.abs(main.currentTime - overlay.currentTime) > 0.05) {
overlay.currentTime = main.currentTime;
}
};
main.addEventListener('play', onPlay);
main.addEventListener('pause', onPause);
main.addEventListener('seeked', onSeekOrTime);
main.addEventListener('timeupdate', onSeekOrTime);
// Clean up
return () => {
main.removeEventListener('play', onPlay);
main.removeEventListener('pause', onPause);
main.removeEventListener('seeked', onSeekOrTime);
main.removeEventListener('timeupdate', onSeekOrTime);
};
}, [videoRef, overlayVideoRef, uploadedUrl, videoUrl, mode]);
useEffect(() => {
if ((mode === "File") && processingVideoRef.current) {
processingVideoRef.current.play().catch(() => {});
}
}, [mode, videoUrl, uploadedUrl]);
// Remove old prompt-based box extraction logic and only use the above for video frames.
const handleFileChange = (e: React.ChangeEvent<HTMLInputElement>) => {
const file = e.target.files?.[0] || null;
setUploadedFile(file);
setUploadedUrl(file ? URL.createObjectURL(file) : "");
setError(null);
setImageProcessed(false);
setVideoProcessing(false);
setExampleProcessing(false);
};
// Webcam mode: process frames with setInterval
useEffect(() => {
if (mode !== "File" || !isLoaded || !uploadedFile || !isVideoFile(uploadedFile) || !videoProcessing) return;
processVideoLoop();
}, [mode, isLoaded, prompt, runInference, uploadedFile, videoProcessing]);
// Example video mode: process frames with setInterval
useEffect(() => {
if (mode !== "File" || uploadedFile || !isLoaded || !exampleProcessing) return;
processExampleLoop();
}, [mode, isLoaded, prompt, runInference, uploadedFile, exampleProcessing]);
// File mode: process uploaded image (only on button click)
const handleProcessImage = async () => {
if (!isLoaded || !uploadedFile || !isImageFile(uploadedFile) || !imageRef.current || !canvasRef.current) return;
const img = imageRef.current;
const canvas = canvasRef.current;
canvas.width = img.naturalWidth;
canvas.height = img.naturalHeight;
setCanvasDims({w:canvas.width,h:canvas.height});
setVideoDims({w:img.naturalWidth,h:img.naturalHeight});
const ctx = canvas.getContext("2d");
if (!ctx) return;
ctx.drawImage(img, 0, 0, canvas.width, canvas.height);
setProcessing(true);
setError(null);
setInferenceStatus("Running inference...");
await runInference(img, prompt, (output: string) => {
setDebugOutput(output);
setInferenceStatus("Inference complete.");
ctx.drawImage(img, 0, 0, canvas.width, canvas.height);
let boxes = extractAllBoundingBoxes(output);
console.log("Model output:", output);
console.log("Boxes after normalization:", boxes);
console.log("Canvas size:", canvas.width, canvas.height);
if (boxes.length > 0) {
const [x1, y1, x2, y2] = boxes[0].bbox_2d;
console.log("First box coords:", x1, y1, x2, y2);
}
if (boxes.length === 0) setInferenceStatus("No boxes detected or model output invalid.");
if (Array.isArray(boxes) && boxes.length > 0) {
const scaleX = canvas.width / img.naturalWidth;
const scaleY = canvas.height / img.naturalHeight;
drawBoundingBoxesOnCanvas(ctx, boxes, { scaleX, scaleY });
}
setImageProcessed(true);
});
setProcessing(false);
};
// File mode: process uploaded video frames (start/stop)
const handleToggleVideoProcessing = () => {
setVideoProcessing((prev: boolean) => {
const next = !prev;
// Always stop all loops before starting
processingLoopRef.current = false;
setTimeout(() => {
if (next) {
processingLoopRef.current = true;
processVideoLoop();
}
}, 50);
return next;
});
};
// Handle start/stop for example video processing
const handleToggleExampleProcessing = () => {
setExampleProcessing((prev: boolean) => {
const next = !prev;
// Always stop all loops before starting
processingLoopRef.current = false;
setTimeout(() => {
if (next) {
processingLoopRef.current = true;
processVideoLoop();
}
}, 50);
return next;
});
};
// Test draw box function
const handleTestDrawBox = () => {
if (!canvasRef.current) return;
const canvas = canvasRef.current;
const ctx = canvas.getContext("2d");
if (!ctx) return;
ctx.clearRect(0, 0, canvas.width, canvas.height);
ctx.strokeStyle = "#FF00FF";
ctx.lineWidth = 4;
ctx.strokeRect(40, 40, Math.max(40,canvas.width/4), Math.max(40,canvas.height/4));
ctx.font = "20px Arial";
ctx.fillStyle = "#FF00FF";
ctx.fillText("Test Box", 50, 35);
};
useEffect(() => {
const draw = () => {
const overlayVideo = overlayVideoRef.current;
const canvas = canvasRef.current;
if (!overlayVideo || !canvas) return;
const displayWidth = overlayVideo.clientWidth;
const displayHeight = overlayVideo.clientHeight;
canvas.width = displayWidth;
canvas.height = displayHeight;
const ctx = canvas.getContext("2d");
if (!ctx) return;
ctx.clearRect(0, 0, canvas.width, canvas.height);
const now = Date.now();
const boxHistory = boxHistoryRef.current.filter((b: any) => now - b.timestamp < 2000);
if (boxHistory.length > 0) {
// Fix: Draw all boxes, even if bbox_2d is an array of arrays
const denormalizedBoxes: any[] = [];
for (const b of boxHistory) {
if (Array.isArray(b.bbox_2d) && Array.isArray(b.bbox_2d[0])) {
// Multiple boxes per label
for (const arr of b.bbox_2d) {
if (Array.isArray(arr) && arr.length === 4) {
denormalizedBoxes.push({
...b,
bbox_2d: denormalizeBox(arr, displayWidth, displayHeight)
});
}
}
} else if (Array.isArray(b.bbox_2d) && b.bbox_2d.length === 4) {
// Single box
denormalizedBoxes.push({
...b,
bbox_2d: denormalizeBox(b.bbox_2d, displayWidth, displayHeight)
});
}
}
drawBoundingBoxesOnCanvas(ctx, denormalizedBoxes, { color: "#FF00FF", lineWidth: 4, font: "20px Arial", scaleX: 1, scaleY: 1 });
}
};
draw();
const interval = setInterval(draw, 100);
// Redraw on window resize
const handleResize = () => draw();
window.addEventListener('resize', handleResize);
return () => {
clearInterval(interval);
window.removeEventListener('resize', handleResize);
};
}, [overlayVideoRef, canvasRef]);
// Drawing loop: draws the latest YOLOv8 boxes every frame
React.useEffect(() => {
let running = true;
function drawLoop() {
if (!running) return;
const overlayVideo = overlayVideoRef.current;
const canvas = canvasRef.current;
const processingVideo = processingVideoRef.current;
if (canvas && overlayVideo && processingVideo) {
// Set canvas size to match the visible video
canvas.width = overlayVideo.clientWidth;
canvas.height = overlayVideo.clientHeight;
const ctx = canvas.getContext('2d');
if (ctx) {
ctx.clearRect(0, 0, canvas.width, canvas.height);
// Draw all YOLOv8 boxes from last detection
const yoloBoxes = lastYoloBoxesRef.current;
yoloBoxes.forEach((obj: any) => {
// Scale from YOLOv8 input size to canvas size
const scaleX = canvas.width / YOLOV8_INPUT_WIDTH;
const scaleY = canvas.height / YOLOV8_INPUT_HEIGHT;
const [x1, y1, x2, y2] = obj.bbox;
const drawX = x1 * scaleX;
const drawY = y1 * scaleY;
const drawW = (x2 - x1) * scaleX;
const drawH = (y2 - y1) * scaleY;
ctx.strokeStyle = '#00FFFF';
ctx.lineWidth = 5;
ctx.strokeRect(drawX, drawY, drawW, drawH);
ctx.font = 'bold 22px Arial';
// Draw YOLOv8 label and confidence
const yoloLabel = obj.label || '';
const yoloScore = obj.score !== undefined ? ` ${(obj.score * 100).toFixed(1)}%` : '';
const yoloText = `${yoloLabel}${yoloScore}`;
ctx.fillStyle = 'rgba(0,0,0,0.7)';
const yoloTextWidth = ctx.measureText(yoloText).width + 8;
ctx.fillRect(drawX - 4, drawY - 24, yoloTextWidth, 26);
ctx.fillStyle = '#00FFFF';
ctx.fillText(yoloText, drawX, drawY - 4);
// Draw FastVLM annotation below the box if available
if (hasAnnotation(obj)) {
ctx.font = 'bold 18px Arial';
ctx.fillStyle = 'rgba(0,0,0,0.7)';
const annTextWidth = ctx.measureText(obj.annotation).width + 8;
ctx.fillRect(drawX - 4, drawY + drawH + 4, annTextWidth, 24);
ctx.fillStyle = '#00FFFF';
ctx.fillText(obj.annotation, drawX, drawY + drawH + 22);
}
});
}
}
requestAnimationFrame(drawLoop);
}
drawLoop();
return () => { running = false; };
}, [overlayVideoRef, canvasRef, processingVideoRef]);
// YOLOv8 detection loop: runs as fast as possible, updates lastYoloBoxesRef, and triggers FastVLM annotation in the background
const yoloDetectionLoop = async () => {
if (!processingLoopRef.current) return;
if (isYoloBusy) {
requestAnimationFrame(yoloDetectionLoop);
return;
}
isYoloBusy = true;
try {
const processingVideo = processingVideoRef.current;
if (!processingVideo || processingVideo.paused || processingVideo.ended || processingVideo.videoWidth === 0) {
isYoloBusy = false;
requestAnimationFrame(yoloDetectionLoop);
return;
}
// Run YOLOv8 detection
const session = await loadYoloModel();
const inputTensor = preprocessFrameToTensor(processingVideo);
const feeds: Record<string, ort.Tensor> = {};
feeds[session.inputNames[0]] = inputTensor;
const results = await session.run(feeds);
const output = results[session.outputNames[0]];
const detections = postprocessYoloOutput(output);
lastYoloBoxesRef.current = detections;
// Run FastVLM on the full frame (wait for YOLOv8 to finish)
await runInference(processingVideo, prompt, (output: string) => {
setDebugOutput(output);
});
} catch (err) {
console.error('YOLOv8+FastVLM error:', err);
} finally {
isYoloBusy = false;
requestAnimationFrame(yoloDetectionLoop);
}
};
// Add this effect after the processing loop and toggle handlers
useEffect(() => {
// Stop processing loop on video source change or processing toggle
processingLoopRef.current = false;
// Start processing loop for the correct video after refs update
setTimeout(() => {
if (videoProcessing && uploadedFile && isVideoFile(uploadedFile)) {
processingLoopRef.current = true;
yoloDetectionLoop();
} else if (exampleProcessing && !uploadedFile) {
processingLoopRef.current = true;
yoloDetectionLoop();
}
}, 100);
// eslint-disable-next-line
}, [uploadedFile, videoProcessing, exampleProcessing]);
return (
<div className="absolute inset-0 text-white">
<div className="fixed top-0 left-0 w-full bg-gray-900 text-white text-center py-2 z-50">
{isLoading ? "Loading model..." : isLoaded ? "Model loaded" : modelError ? `Model error: ${modelError}` : "Model not loaded"}
</div>
<div className="text-center text-sm text-blue-300 mt-2">{inferenceStatus}</div>
<div className="flex flex-col items-center justify-center h-full w-full">
{/* Mode Selector */}
<div className="mb-6">
<div className="flex space-x-4">
{MODES.map((m) => (
<button
key={m}
className={`px-6 py-2 rounded-lg font-semibold transition-all duration-200 ${
mode === m ? "bg-blue-600 text-white" : "bg-gray-700 text-gray-300 hover:bg-blue-500"
}`}
onClick={() => setMode(m)}
>
{m}
</button>
))}
</div>
</div>
{/* Mode Content */}
<div className="w-full max-w-2xl flex-1 flex flex-col items-center justify-center">
{mode === "File" && (
<div className="w-full text-center flex flex-col items-center">
<div className="mb-4 w-full max-w-xl">
<label className="block text-left mb-2 font-medium">Detection Prompt:</label>
<textarea
className="w-full p-2 rounded-lg text-black"
rows={3}
value={prompt}
onChange={(e) => setPrompt(e.target.value)}
/>
</div>
<div className="mb-4 w-full max-w-xl">
<input
type="file"
accept="image/*,video/*"
onChange={handleFileChange}
className="block w-full text-sm text-gray-300 file:mr-4 file:py-2 file:px-4 file:rounded-lg file:border-0 file:text-sm file:font-semibold file:bg-blue-600 file:text-white hover:file:bg-blue-700"
/>
</div>
{/* Add toggle button above video area */}
<div className="mb-2 w-full max-w-xl flex justify-end">
<button
className={`px-4 py-1 rounded bg-gray-700 text-white text-xs font-semibold ${showProcessingVideo ? 'bg-blue-600' : ''}`}
onClick={() => setShowProcessingVideo(v => !v)}
type="button"
>
{showProcessingVideo ? 'Hide' : 'Show'} Processed Video
</button>
</div>
{/* Show uploaded image */}
{uploadedFile && isImageFile(uploadedFile) && (
<div className="relative w-full max-w-xl">
<img
ref={imageRef}
src={uploadedUrl}
alt="Uploaded"
className="w-full rounded-lg shadow-lg mb-2"
style={{ background: "#222" }}
/>
<canvas
ref={canvasRef}
className="absolute top-0 left-0 w-full h-full pointer-events-none"
style={{ zIndex: 10, pointerEvents: "none" }}
/>
<button
className="mt-4 px-6 py-2 rounded-lg bg-blue-600 text-white font-semibold"
onClick={handleProcessImage}
disabled={processing}
>
{processing ? "Processing..." : imageProcessed ? "Reprocess Image" : "Process Image"}
</button>
</div>
)}
{/* Show uploaded video */}
{uploadedFile && isVideoFile(uploadedFile) && (
<div className="relative w-full max-w-xl" style={{ position: 'relative' }}>
{/* Visible overlay video for user */}
<video
ref={overlayVideoRef}
src={uploadedUrl}
controls
autoPlay
loop
muted
playsInline
className="w-full rounded-lg shadow-lg mb-2"
style={{ background: "#222", display: "block" }}
crossOrigin="anonymous"
onLoadedMetadata={(e: React.SyntheticEvent<HTMLVideoElement, Event>) => {
if (canvasRef.current) {
canvasRef.current.width = e.currentTarget.clientWidth;
canvasRef.current.height = e.currentTarget.clientHeight;
}
}}
onResize={() => {
if (canvasRef.current && overlayVideoRef.current) {
canvasRef.current.width = overlayVideoRef.current.clientWidth;
canvasRef.current.height = overlayVideoRef.current.clientHeight;
}
}}
/>
{/* Canvas overlay */}
<canvas
ref={canvasRef}
style={{
position: "absolute",
top: 0,
left: 0,
width: "100%",
height: "100%",
zIndex: 100,
pointerEvents: "none",
display: "block"
}}
width={overlayVideoRef.current?.clientWidth || 640}
height={overlayVideoRef.current?.clientHeight || 480}
/>
{/* Hidden or visible processing video for FastVLM/canvas */}
<video
ref={processingVideoRef}
src={uploadedUrl}
autoPlay
loop
muted
playsInline
crossOrigin="anonymous"
style={{ display: showProcessingVideo ? "block" : "none", width: "100%", marginTop: 8, borderRadius: 8, boxShadow: '0 2px 8px #0004' }}
onLoadedData={e => { e.currentTarget.play().catch(() => {}); }}
/>
<button
className="mt-4 px-6 py-2 rounded-lg bg-blue-600 text-white font-semibold"
onClick={handleToggleVideoProcessing}
>
{videoProcessing ? "Stop Processing" : "Start Processing"}
</button>
</div>
)}
{/* Show example video if no file uploaded */}
{!uploadedFile && (
<div className="relative w-full max-w-xl" style={{ position: 'relative' }}>
{/* Visible overlay video for user */}
<video
ref={overlayVideoRef}
src={EXAMPLE_VIDEO_URL}
controls
autoPlay
loop
muted
playsInline
className="w-full rounded-lg shadow-lg mb-2"
style={{ background: "#222", display: "block" }}
crossOrigin="anonymous"
/>
{/* Canvas overlay */}
<canvas
ref={canvasRef}
style={{
position: "absolute",
top: 0,
left: 0,
width: "100%",
height: "100%",
zIndex: 100,
pointerEvents: "none",
display: "block"
}}
width={overlayVideoRef.current?.clientWidth || 640}
height={overlayVideoRef.current?.clientHeight || 480}
/>
{/* Hidden or visible processing video for FastVLM/canvas */}
<video
ref={processingVideoRef}
src={EXAMPLE_VIDEO_URL}
autoPlay
loop
muted
playsInline
crossOrigin="anonymous"
style={{ display: showProcessingVideo ? "block" : "none", width: "100%", marginTop: 8, borderRadius: 8, boxShadow: '0 2px 8px #0004' }}
onLoadedData={e => { e.currentTarget.play().catch(() => {}); }}
/>
<button
className="mt-4 px-6 py-2 rounded-lg bg-blue-600 text-white font-semibold"
onClick={handleToggleExampleProcessing}
>
{exampleProcessing ? "Stop Processing" : "Start Processing"}
</button>
</div>
)}
{processing && <div className="text-blue-400 mt-2">Processing frame...</div>}
{error && <div className="text-red-400 mt-2">Error: {error}</div>}
<button
className="mt-4 px-6 py-2 rounded-lg bg-gray-600 text-white font-semibold"
onClick={handleTestDrawBox}
>
Test Draw Box
</button>
<div className="mt-2 p-2 bg-gray-800 rounded text-xs">
<div>Canvas: {canvasDims ? `${canvasDims.w}x${canvasDims.h}` : "-"} | Video: {videoDims ? `${videoDims.w}x${videoDims.h}` : "-"}</div>
<div>Raw Model Output:</div>
<pre className="overflow-x-auto max-h-32 whitespace-pre-wrap">{debugOutput}</pre>
</div>
</div>
)}
</div>
</div>
</div>
);
}