|
import spaces |
|
import gradio as gr |
|
import numpy as np |
|
import PIL.Image |
|
from PIL import Image |
|
import random |
|
from diffusers import StableDiffusionXLPipeline |
|
from diffusers import EulerAncestralDiscreteScheduler |
|
import torch |
|
from compel import Compel, ReturnedEmbeddingsType |
|
from huggingface_hub import login |
|
import os |
|
|
|
|
|
HF_TOKEN = os.getenv("HF_TOKEN") |
|
|
|
|
|
if HF_TOKEN: |
|
login(token=HF_TOKEN) |
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
try: |
|
|
|
pipe = StableDiffusionXLPipeline.from_pretrained( |
|
"votepurchase/waiREALCN_v14", |
|
torch_dtype=torch.float16, |
|
variant="fp16", |
|
use_safetensors=True, |
|
use_auth_token=HF_TOKEN |
|
) |
|
|
|
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) |
|
pipe.to(device) |
|
|
|
|
|
pipe.text_encoder.to(torch.float16) |
|
pipe.text_encoder_2.to(torch.float16) |
|
pipe.vae.to(torch.float16) |
|
pipe.unet.to(torch.float16) |
|
|
|
|
|
compel = Compel( |
|
tokenizer=[pipe.tokenizer, pipe.tokenizer_2], |
|
text_encoder=[pipe.text_encoder, pipe.text_encoder_2], |
|
returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED, |
|
requires_pooled=[False, True], |
|
truncate_long_prompts=False |
|
) |
|
|
|
model_loaded = True |
|
except Exception as e: |
|
print(f"Failed to load model: {e}") |
|
model_loaded = False |
|
pipe = None |
|
compel = None |
|
|
|
MAX_SEED = np.iinfo(np.int32).max |
|
MAX_IMAGE_SIZE = 1216 |
|
|
|
|
|
def process_long_prompt(prompt, negative_prompt=""): |
|
"""Simple long prompt processing using Compel""" |
|
try: |
|
conditioning, pooled = compel([prompt, negative_prompt]) |
|
return conditioning, pooled |
|
except Exception as e: |
|
print(f"Long prompt processing failed: {e}, falling back to standard processing") |
|
return None, None |
|
|
|
@spaces.GPU |
|
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps): |
|
if not model_loaded: |
|
error_img = Image.new('RGB', (width, height), color=(50, 50, 50)) |
|
return error_img |
|
|
|
|
|
use_long_prompt = len(prompt.split()) > 60 or len(prompt) > 300 |
|
|
|
if randomize_seed: |
|
seed = random.randint(0, MAX_SEED) |
|
|
|
generator = torch.Generator(device=device).manual_seed(seed) |
|
|
|
try: |
|
|
|
if use_long_prompt: |
|
print("Using long prompt processing...") |
|
conditioning, pooled = process_long_prompt(prompt, negative_prompt) |
|
|
|
if conditioning is not None: |
|
output_image = pipe( |
|
prompt_embeds=conditioning[0:1], |
|
pooled_prompt_embeds=pooled[0:1], |
|
negative_prompt_embeds=conditioning[1:2], |
|
negative_pooled_prompt_embeds=pooled[1:2], |
|
guidance_scale=guidance_scale, |
|
num_inference_steps=num_inference_steps, |
|
width=width, |
|
height=height, |
|
generator=generator |
|
).images[0] |
|
return output_image |
|
|
|
|
|
output_image = pipe( |
|
prompt=prompt, |
|
negative_prompt=negative_prompt, |
|
guidance_scale=guidance_scale, |
|
num_inference_steps=num_inference_steps, |
|
width=width, |
|
height=height, |
|
generator=generator |
|
).images[0] |
|
|
|
return output_image |
|
except RuntimeError as e: |
|
print(f"Error during generation: {e}") |
|
|
|
error_img = Image.new('RGB', (width, height), color=(0, 0, 0)) |
|
return error_img |
|
|
|
|
|
css = """ |
|
#col-container { |
|
margin: 0 auto; |
|
max-width: 520px; |
|
} |
|
""" |
|
|
|
with gr.Blocks(css=css) as demo: |
|
|
|
with gr.Column(elem_id="col-container"): |
|
if not model_loaded: |
|
gr.Markdown("⚠️ **Model failed to load. Please check your Hugging Face token.**") |
|
|
|
with gr.Row(): |
|
prompt = gr.Text( |
|
label="Prompt", |
|
show_label=False, |
|
max_lines=1, |
|
placeholder="Enter your prompt (long prompts are automatically supported)", |
|
container=False, |
|
) |
|
|
|
run_button = gr.Button("Run", scale=0) |
|
|
|
result = gr.Image(label="Result", show_label=False) |
|
|
|
with gr.Accordion("Advanced Settings", open=False): |
|
|
|
negative_prompt = gr.Text( |
|
label="Negative prompt", |
|
max_lines=1, |
|
placeholder="Enter a negative prompt", |
|
value="nsfw, (low quality, worst quality:1.2), very displeasing, 3d, watermark, signature, ugly, poorly drawn" |
|
) |
|
|
|
seed = gr.Slider( |
|
label="Seed", |
|
minimum=0, |
|
maximum=MAX_SEED, |
|
step=1, |
|
value=0, |
|
) |
|
|
|
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) |
|
|
|
with gr.Row(): |
|
width = gr.Slider( |
|
label="Width", |
|
minimum=256, |
|
maximum=MAX_IMAGE_SIZE, |
|
step=32, |
|
value=1024, |
|
) |
|
|
|
height = gr.Slider( |
|
label="Height", |
|
minimum=256, |
|
maximum=MAX_IMAGE_SIZE, |
|
step=32, |
|
value=1024, |
|
) |
|
|
|
with gr.Row(): |
|
guidance_scale = gr.Slider( |
|
label="Guidance scale", |
|
minimum=0.0, |
|
maximum=20.0, |
|
step=0.1, |
|
value=7, |
|
) |
|
|
|
num_inference_steps = gr.Slider( |
|
label="Number of inference steps", |
|
minimum=1, |
|
maximum=28, |
|
step=1, |
|
value=28, |
|
) |
|
|
|
run_button.click( |
|
fn=infer, |
|
inputs=[prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps], |
|
outputs=[result] |
|
) |
|
|
|
demo.queue().launch() |