akhaliq's picture
akhaliq HF Staff
Update app.py
bfc9f2a verified
import gradio as gr
import torch
from PIL import Image
from transformers import AutoModel, AutoTokenizer
from decord import VideoReader, cpu
from scipy.spatial import cKDTree
import numpy as np
import math
import time
import spaces
# Model initialization
model = None
tokenizer = None
MAX_NUM_FRAMES = 180
MAX_NUM_PACKING = 3
TIME_SCALE = 0.1
def load_model():
global model, tokenizer
if model is None:
gr.Info("Loading model... This may take a moment.")
model = AutoModel.from_pretrained(
'openbmb/MiniCPM-V-4_5',
trust_remote_code=True,
attn_implementation='sdpa',
torch_dtype=torch.bfloat16
)
model = model.eval()
tokenizer = AutoTokenizer.from_pretrained(
'openbmb/MiniCPM-V-4_5',
trust_remote_code=True
)
gr.Success("Model loaded successfully!")
return model, tokenizer
def map_to_nearest_scale(values, scale):
tree = cKDTree(np.asarray(scale)[:, None])
_, indices = tree.query(np.asarray(values)[:, None])
return np.asarray(scale)[indices]
def group_array(arr, size):
return [arr[i:i+size] for i in range(0, len(arr), size)]
def encode_video(video_path, choose_fps=3, force_packing=None):
def uniform_sample(l, n):
gap = len(l) / n
idxs = [int(i * gap + gap / 2) for i in range(n)]
return [l[i] for i in idxs]
vr = VideoReader(video_path, ctx=cpu(0))
fps = vr.get_avg_fps()
video_duration = len(vr) / fps
if choose_fps * int(video_duration) <= MAX_NUM_FRAMES:
packing_nums = 1
choose_frames = round(min(choose_fps, round(fps)) * min(MAX_NUM_FRAMES, video_duration))
else:
packing_nums = math.ceil(video_duration * choose_fps / MAX_NUM_FRAMES)
if packing_nums <= MAX_NUM_PACKING:
choose_frames = round(video_duration * choose_fps)
else:
choose_frames = round(MAX_NUM_FRAMES * MAX_NUM_PACKING)
packing_nums = MAX_NUM_PACKING
frame_idx = [i for i in range(0, len(vr))]
frame_idx = np.array(uniform_sample(frame_idx, choose_frames))
if force_packing:
packing_nums = min(force_packing, MAX_NUM_PACKING)
frames = vr.get_batch(frame_idx).asnumpy()
frame_idx_ts = frame_idx / fps
scale = np.arange(0, video_duration, TIME_SCALE)
frame_ts_id = map_to_nearest_scale(frame_idx_ts, scale) / TIME_SCALE
frame_ts_id = frame_ts_id.astype(np.int32)
assert len(frames) == len(frame_ts_id)
frames = [Image.fromarray(v.astype('uint8')).convert('RGB') for v in frames]
frame_ts_id_group = group_array(frame_ts_id, packing_nums)
return frames, frame_ts_id_group, video_duration, len(frame_idx), packing_nums
@spaces.GPU(duration=60)
def process_video_and_question(video, question, fps, force_packing, history):
if video is None:
gr.Warning("Please upload a video first.")
return history, ""
if not question:
gr.Warning("Please enter a question.")
return history, ""
try:
# Load model if not already loaded
model, tokenizer = load_model()
model = model.cuda()
# Encode video
gr.Info(f"Processing video with {fps} FPS...")
frames, frame_ts_id_group, duration, num_frames, packing_nums = encode_video(
video,
fps,
force_packing=force_packing if force_packing > 0 else None
)
# Prepare messages
msgs = [
{'role': 'user', 'content': frames + [question]},
]
# Get model response
gr.Info("Generating response...")
answer = model.chat(
msgs=msgs,
tokenizer=tokenizer,
use_image_id=False,
max_slice_nums=1,
temporal_ids=frame_ts_id_group
)
# Update chat history
history.append({
"role": "user",
"content": f"📹 [Video: {duration:.1f}s, {num_frames} frames, packing: {packing_nums}]\n{question}"
})
history.append({
"role": "assistant",
"content": answer
})
return history, ""
except Exception as e:
gr.Error(f"Error processing video: {str(e)}")
return history, ""
def clear_chat():
return [], None, "", 3, 0
# Create Gradio interface with theme
theme = gr.themes.Soft(
primary_hue=gr.themes.colors.blue,
secondary_hue=gr.themes.colors.gray,
neutral_hue=gr.themes.colors.gray,
spacing_size="md",
radius_size="md",
text_size="md",
font=[gr.themes.GoogleFont("Inter"), "SF Pro Display", "-apple-system", "BlinkMacSystemFont", "sans-serif"],
font_mono=[gr.themes.GoogleFont("SF Mono"), "Monaco", "Menlo", "monospace"]
).set(
body_background_fill="*neutral_50",
body_background_fill_dark="*neutral_950",
button_primary_background_fill="*primary_500",
button_primary_background_fill_hover="*primary_600",
button_primary_text_color="white",
button_primary_border_color="*primary_500",
block_background_fill="white",
block_background_fill_dark="*neutral_900",
block_border_width="1px",
block_border_color="*neutral_200",
block_border_color_dark="*neutral_800",
block_radius="*radius_lg",
block_shadow="0px 1px 3px 0px rgba(0, 0, 0, 0.02), 0px 0px 0px 1px rgba(0, 0, 0, 0.05)",
block_shadow_dark="0px 1px 3px 0px rgba(0, 0, 0, 0.1), 0px 0px 0px 1px rgba(255, 255, 255, 0.05)",
input_background_fill="*neutral_50",
input_background_fill_dark="*neutral_900",
input_border_color="*neutral_300",
input_border_color_dark="*neutral_700",
input_border_width="1px",
input_radius="*radius_md",
slider_color="*primary_500",
)
with gr.Blocks(theme=theme, title="Video Chat with MiniCPM-V") as demo:
gr.Markdown(
"""
# 🎥 Video Chat with MiniCPM-V-4.5
Upload a video and ask questions about it! The model uses advanced 3D-resampler compression
to process multiple frames efficiently.
**Note:** First run will download the model (~8GB), which may take a few minutes.
"""
)
with gr.Row():
# Main video area (takes most of the space)
with gr.Column(scale=3):
video_input = gr.Video(
label="Upload Video",
height=600
)
# Sidebar with all controls
with gr.Column(scale=1):
chatbot = gr.Chatbot(
label="Chat",
height=300,
type="messages"
)
with gr.Row():
question_input = gr.Textbox(
label="Ask about the video",
placeholder="e.g., Describe what happens in this video...",
lines=2,
scale=4
)
submit_btn = gr.Button("Send", variant="primary", scale=1)
with gr.Row():
clear_btn = gr.Button("Clear Chat", variant="secondary", size="sm")
example_btn1 = gr.Button("Describe", size="sm")
example_btn2 = gr.Button("Action", size="sm")
example_btn3 = gr.Button("People", size="sm")
with gr.Accordion("Advanced Settings", open=False):
fps_slider = gr.Slider(
minimum=1,
maximum=10,
value=3,
step=1,
label="FPS for frame extraction",
info="Higher FPS captures more detail but uses more memory"
)
force_packing_slider = gr.Slider(
minimum=0,
maximum=MAX_NUM_PACKING,
value=0,
step=1,
label="Force Packing",
info=f"0 = auto, 1-{MAX_NUM_PACKING} = force specific packing number"
)
with gr.Accordion("ℹ️ Video Info", open=False):
gr.Markdown(
"""
- **Max frames:** 180 × 3 packing = 540 frames
- **Temporal compression:** 64 tokens per video
- **Supported formats:** MP4, AVI, MOV, etc.
"""
)
# Example questions
example_btn1.click(
lambda: "Describe this video in detail.",
outputs=question_input
)
example_btn2.click(
lambda: "What actions or events occur in this video?",
outputs=question_input
)
example_btn3.click(
lambda: "Are there any people in this video? If so, what are they doing?",
outputs=question_input
)
# Event handlers
submit_btn.click(
fn=process_video_and_question,
inputs=[video_input, question_input, fps_slider, force_packing_slider, chatbot],
outputs=[chatbot, question_input]
)
question_input.submit(
fn=process_video_and_question,
inputs=[video_input, question_input, fps_slider, force_packing_slider, chatbot],
outputs=[chatbot, question_input]
)
clear_btn.click(
fn=clear_chat,
outputs=[chatbot, video_input, question_input, fps_slider, force_packing_slider]
)
# Examples
gr.Examples(
examples=[
["Describe what happens in this video"],
["What is the main subject of this video?"],
["Count the number of objects or people in the video"],
["What emotions or mood does this video convey?"],
["Summarize the key moments in this video"],
],
inputs=question_input,
label="Example Questions"
)
if __name__ == "__main__":
demo.launch()