PartCrafter / src /train_partcrafter.py
alexnasa's picture
Upload 85 files
bef5729 verified
import warnings
warnings.filterwarnings("ignore") # ignore all warnings
import diffusers.utils.logging as diffusion_logging
diffusion_logging.set_verbosity_error() # ignore diffusers warnings
from src.utils.typing_utils import *
import os
import argparse
import logging
import time
import math
import gc
from packaging import version
import trimesh
from PIL import Image
import numpy as np
import wandb
from tqdm import tqdm
import torch
import torch.nn.functional as tF
import accelerate
from accelerate import Accelerator
from accelerate.logging import get_logger as get_accelerate_logger
from accelerate import DataLoaderConfiguration, DeepSpeedPlugin
from diffusers.training_utils import (
compute_density_for_timestep_sampling,
compute_loss_weighting_for_sd3
)
from transformers import (
BitImageProcessor,
Dinov2Model,
)
from src.schedulers import RectifiedFlowScheduler
from src.models.autoencoders import TripoSGVAEModel
from src.models.transformers import PartCrafterDiTModel
from src.pipelines.pipeline_partcrafter import PartCrafterPipeline
from src.datasets import (
ObjaversePartDataset,
BatchedObjaversePartDataset,
MultiEpochsDataLoader,
yield_forever
)
from src.utils.data_utils import get_colored_mesh_composition
from src.utils.train_utils import (
MyEMAModel,
get_configs,
get_optimizer,
get_lr_scheduler,
save_experiment_params,
save_model_architecture,
)
from src.utils.render_utils import (
render_views_around_mesh,
render_normal_views_around_mesh,
make_grid_for_images_or_videos,
export_renderings
)
from src.utils.metric_utils import compute_cd_and_f_score_in_training
def main():
PROJECT_NAME = "PartCrafter"
parser = argparse.ArgumentParser(
description="Train a diffusion model for 3D object generation",
)
parser.add_argument(
"--config",
type=str,
required=True,
help="Path to the config file"
)
parser.add_argument(
"--tag",
type=str,
default=None,
help="Tag that refers to the current experiment"
)
parser.add_argument(
"--output_dir",
type=str,
default="output",
help="Path to the output directory"
)
parser.add_argument(
"--resume_from_iter",
type=int,
default=None,
help="The iteration to load the checkpoint from"
)
parser.add_argument(
"--seed",
type=int,
default=0,
help="Seed for the PRNG"
)
parser.add_argument(
"--offline_wandb",
action="store_true",
help="Use offline WandB for experiment tracking"
)
parser.add_argument(
"--max_train_steps",
type=int,
default=None,
help="The max iteration step for training"
)
parser.add_argument(
"--max_val_steps",
type=int,
default=2,
help="The max iteration step for validation"
)
parser.add_argument(
"--num_workers",
type=int,
default=32,
help="The number of processed spawned by the batch provider"
)
parser.add_argument(
"--pin_memory",
action="store_true",
help="Pin memory for the data loader"
)
parser.add_argument(
"--use_ema",
action="store_true",
help="Use EMA model for training"
)
parser.add_argument(
"--scale_lr",
action="store_true",
help="Scale lr with total batch size (base batch size: 256)"
)
parser.add_argument(
"--max_grad_norm",
type=float,
default=1.,
help="Max gradient norm for gradient clipping"
)
parser.add_argument(
"--gradient_accumulation_steps",
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass"
)
parser.add_argument(
"--mixed_precision",
type=str,
default="fp16",
choices=["no", "fp16", "bf16"],
help="Type of mixed precision training"
)
parser.add_argument(
"--allow_tf32",
action="store_true",
help="Enable TF32 for faster training on Ampere GPUs"
)
parser.add_argument(
"--val_guidance_scales",
type=list,
nargs="+",
default=[7.0],
help="CFG scale used for validation"
)
parser.add_argument(
"--use_deepspeed",
action="store_true",
help="Use DeepSpeed for training"
)
parser.add_argument(
"--zero_stage",
type=int,
default=1,
choices=[1, 2, 3], # https://huggingface.co/docs/accelerate/usage_guides/deepspeed
help="ZeRO stage type for DeepSpeed"
)
parser.add_argument(
"--from_scratch",
action="store_true",
help="Train from scratch"
)
parser.add_argument(
"--load_pretrained_model",
type=str,
default=None,
help="Tag of a pretrained PartCrafterDiTModel in this project"
)
parser.add_argument(
"--load_pretrained_model_ckpt",
type=int,
default=-1,
help="Iteration of the pretrained PartCrafterDiTModel checkpoint"
)
# Parse the arguments
args, extras = parser.parse_known_args()
# Parse the config file
configs = get_configs(args.config, extras) # change yaml configs by `extras`
args.val_guidance_scales = [float(x[0]) if isinstance(x, list) else float(x) for x in args.val_guidance_scales]
if args.max_val_steps > 0:
# If enable validation, the max_val_steps must be a multiple of nrow
# Always keep validation batchsize 1
divider = configs["val"]["nrow"]
args.max_val_steps = max(args.max_val_steps, divider)
if args.max_val_steps % divider != 0:
args.max_val_steps = (args.max_val_steps // divider + 1) * divider
# Create an experiment directory using the `tag`
if args.tag is None:
args.tag = time.strftime("%Y%m%d_%H_%M_%S")
exp_dir = os.path.join(args.output_dir, args.tag)
ckpt_dir = os.path.join(exp_dir, "checkpoints")
eval_dir = os.path.join(exp_dir, "evaluations")
os.makedirs(ckpt_dir, exist_ok=True)
os.makedirs(eval_dir, exist_ok=True)
# Initialize the logger
logging.basicConfig(
format="%(asctime)s - %(message)s",
datefmt="%Y/%m/%d %H:%M:%S",
level=logging.INFO
)
logger = get_accelerate_logger(__name__, log_level="INFO")
file_handler = logging.FileHandler(os.path.join(exp_dir, "log.txt")) # output to file
file_handler.setFormatter(logging.Formatter(
fmt="%(asctime)s - %(message)s",
datefmt="%Y/%m/%d %H:%M:%S"
))
logger.logger.addHandler(file_handler)
logger.logger.propagate = True # propagate to the root logger (console)
# Set DeepSpeed config
if args.use_deepspeed:
deepspeed_plugin = DeepSpeedPlugin(
gradient_accumulation_steps=args.gradient_accumulation_steps,
gradient_clipping=args.max_grad_norm,
zero_stage=int(args.zero_stage),
offload_optimizer_device="cpu", # hard-coded here, TODO: make it configurable
)
else:
deepspeed_plugin = None
# Initialize the accelerator
accelerator = Accelerator(
project_dir=exp_dir,
gradient_accumulation_steps=args.gradient_accumulation_steps,
mixed_precision=args.mixed_precision,
split_batches=False, # batch size per GPU
dataloader_config=DataLoaderConfiguration(non_blocking=args.pin_memory),
deepspeed_plugin=deepspeed_plugin,
)
logger.info(f"Accelerator state:\n{accelerator.state}\n")
# Set the random seed
if args.seed >= 0:
accelerate.utils.set_seed(args.seed)
logger.info(f"You have chosen to seed([{args.seed}]) the experiment [{args.tag}]\n")
# Enable TF32 for faster training on Ampere GPUs
if args.allow_tf32:
torch.backends.cuda.matmul.allow_tf32 = True
train_dataset = BatchedObjaversePartDataset(
configs=configs,
batch_size=configs["train"]["batch_size_per_gpu"],
is_main_process=accelerator.is_main_process,
shuffle=True,
training=True,
)
val_dataset = ObjaversePartDataset(
configs=configs,
training=False,
)
train_loader = MultiEpochsDataLoader(
train_dataset,
batch_size=configs["train"]["batch_size_per_gpu"],
num_workers=args.num_workers,
drop_last=True,
pin_memory=args.pin_memory,
collate_fn=train_dataset.collate_fn,
)
val_loader = MultiEpochsDataLoader(
val_dataset,
batch_size=configs["val"]["batch_size_per_gpu"],
num_workers=args.num_workers,
drop_last=True,
pin_memory=args.pin_memory,
)
random_val_loader = MultiEpochsDataLoader(
val_dataset,
batch_size=configs["val"]["batch_size_per_gpu"],
shuffle=True,
num_workers=args.num_workers,
drop_last=True,
pin_memory=args.pin_memory,
)
logger.info(f"Loaded [{len(train_dataset)}] training samples and [{len(val_dataset)}] validation samples\n")
# Compute the effective batch size and scale learning rate
total_batch_size = configs["train"]["batch_size_per_gpu"] * \
accelerator.num_processes * args.gradient_accumulation_steps
configs["train"]["total_batch_size"] = total_batch_size
if args.scale_lr:
configs["optimizer"]["lr"] *= (total_batch_size / 256)
configs["lr_scheduler"]["max_lr"] = configs["optimizer"]["lr"]
# Initialize the model
logger.info("Initializing the model...")
vae = TripoSGVAEModel.from_pretrained(
configs["model"]["pretrained_model_name_or_path"],
subfolder="vae"
)
feature_extractor_dinov2 = BitImageProcessor.from_pretrained(
configs["model"]["pretrained_model_name_or_path"],
subfolder="feature_extractor_dinov2"
)
image_encoder_dinov2 = Dinov2Model.from_pretrained(
configs["model"]["pretrained_model_name_or_path"],
subfolder="image_encoder_dinov2"
)
enable_part_embedding = configs["model"]["transformer"].get("enable_part_embedding", True)
enable_local_cross_attn = configs["model"]["transformer"].get("enable_local_cross_attn", True)
enable_global_cross_attn = configs["model"]["transformer"].get("enable_global_cross_attn", True)
global_attn_block_ids = configs["model"]["transformer"].get("global_attn_block_ids", None)
if global_attn_block_ids is not None:
global_attn_block_ids = list(global_attn_block_ids)
global_attn_block_id_range = configs["model"]["transformer"].get("global_attn_block_id_range", None)
if global_attn_block_id_range is not None:
global_attn_block_id_range = list(global_attn_block_id_range)
if args.from_scratch:
logger.info(f"Initialize PartCrafterDiTModel from scratch\n")
transformer = PartCrafterDiTModel.from_config(
os.path.join(
configs["model"]["pretrained_model_name_or_path"],
"transformer"
),
enable_part_embedding=enable_part_embedding,
enable_local_cross_attn=enable_local_cross_attn,
enable_global_cross_attn=enable_global_cross_attn,
global_attn_block_ids=global_attn_block_ids,
global_attn_block_id_range=global_attn_block_id_range,
)
elif args.load_pretrained_model is None:
logger.info(f"Load pretrained TripoSGDiTModel to initialize PartCrafterDiTModel from [{configs['model']['pretrained_model_name_or_path']}]\n")
transformer, loading_info = PartCrafterDiTModel.from_pretrained(
configs["model"]["pretrained_model_name_or_path"],
subfolder="transformer",
low_cpu_mem_usage=False,
output_loading_info=True,
enable_part_embedding=enable_part_embedding,
enable_local_cross_attn=enable_local_cross_attn,
enable_global_cross_attn=enable_global_cross_attn,
global_attn_block_ids=global_attn_block_ids,
global_attn_block_id_range=global_attn_block_id_range,
)
else:
logger.info(f"Load PartCrafterDiTModel EMA checkpoint from [{args.load_pretrained_model}] iteration [{args.load_pretrained_model_ckpt:06d}]\n")
path = os.path.join(
args.output_dir,
args.load_pretrained_model,
"checkpoints",
f"{args.load_pretrained_model_ckpt:06d}"
)
transformer, loading_info = PartCrafterDiTModel.from_pretrained(
path,
subfolder="transformer_ema",
low_cpu_mem_usage=False,
output_loading_info=True,
enable_part_embedding=enable_part_embedding,
enable_local_cross_attn=enable_local_cross_attn,
enable_global_cross_attn=enable_global_cross_attn,
global_attn_block_ids=global_attn_block_ids,
global_attn_block_id_range=global_attn_block_id_range,
)
if not args.from_scratch:
for v in loading_info.values():
if v and len(v) > 0:
logger.info(f"Loading info of PartCrafterDiTModel: {loading_info}\n")
break
noise_scheduler = RectifiedFlowScheduler.from_pretrained(
configs["model"]["pretrained_model_name_or_path"],
subfolder="scheduler"
)
if args.use_ema:
ema_transformer = MyEMAModel(
transformer.parameters(),
model_cls=PartCrafterDiTModel,
model_config=transformer.config,
**configs["train"]["ema_kwargs"]
)
# Freeze VAE and image encoder
vae.requires_grad_(False)
image_encoder_dinov2.requires_grad_(False)
vae.eval()
image_encoder_dinov2.eval()
trainable_modules = configs["train"].get("trainable_modules", None)
if trainable_modules is None:
transformer.requires_grad_(True)
else:
trainable_module_names = []
transformer.requires_grad_(False)
for name, module in transformer.named_modules():
for module_name in tuple(trainable_modules.split(",")):
if module_name in name:
for params in module.parameters():
params.requires_grad = True
trainable_module_names.append(name)
logger.info(f"Trainable parameter names: {trainable_module_names}\n")
# transformer.enable_xformers_memory_efficient_attention() # use `tF.scaled_dot_product_attention` instead
# `accelerate` 0.16.0 will have better support for customized saving
if version.parse(accelerate.__version__) >= version.parse("0.16.0"):
# Create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format
def save_model_hook(models, weights, output_dir):
if accelerator.is_main_process:
if args.use_ema:
ema_transformer.save_pretrained(os.path.join(output_dir, "transformer_ema"))
for i, model in enumerate(models):
model.save_pretrained(os.path.join(output_dir, "transformer"))
# Make sure to pop weight so that corresponding model is not saved again
if weights:
weights.pop()
def load_model_hook(models, input_dir):
if args.use_ema:
load_model = MyEMAModel.from_pretrained(os.path.join(input_dir, "transformer_ema"), PartCrafterDiTModel)
ema_transformer.load_state_dict(load_model.state_dict())
ema_transformer.to(accelerator.device)
del load_model
for _ in range(len(models)):
# Pop models so that they are not loaded again
model = models.pop()
# Load diffusers style into model
load_model = PartCrafterDiTModel.from_pretrained(input_dir, subfolder="transformer")
model.register_to_config(**load_model.config)
model.load_state_dict(load_model.state_dict())
del load_model
accelerator.register_save_state_pre_hook(save_model_hook)
accelerator.register_load_state_pre_hook(load_model_hook)
if configs["train"]["grad_checkpoint"]:
transformer.enable_gradient_checkpointing()
# Initialize the optimizer and learning rate scheduler
logger.info("Initializing the optimizer and learning rate scheduler...\n")
name_lr_mult = configs["train"].get("name_lr_mult", None)
lr_mult = configs["train"].get("lr_mult", 1.0)
params, params_lr_mult, names_lr_mult = [], [], []
for name, param in transformer.named_parameters():
if name_lr_mult is not None:
for k in name_lr_mult.split(","):
if k in name:
params_lr_mult.append(param)
names_lr_mult.append(name)
if name not in names_lr_mult:
params.append(param)
else:
params.append(param)
optimizer = get_optimizer(
params=[
{"params": params, "lr": configs["optimizer"]["lr"]},
{"params": params_lr_mult, "lr": configs["optimizer"]["lr"] * lr_mult}
],
**configs["optimizer"]
)
if name_lr_mult is not None:
logger.info(f"Learning rate x [{lr_mult}] parameter names: {names_lr_mult}\n")
configs["lr_scheduler"]["total_steps"] = configs["train"]["epochs"] * math.ceil(
len(train_loader) // accelerator.num_processes / args.gradient_accumulation_steps) # only account updated steps
configs["lr_scheduler"]["total_steps"] *= accelerator.num_processes # for lr scheduler setting
if "num_warmup_steps" in configs["lr_scheduler"]:
configs["lr_scheduler"]["num_warmup_steps"] *= accelerator.num_processes # for lr scheduler setting
lr_scheduler = get_lr_scheduler(optimizer=optimizer, **configs["lr_scheduler"])
configs["lr_scheduler"]["total_steps"] //= accelerator.num_processes # reset for multi-gpu
if "num_warmup_steps" in configs["lr_scheduler"]:
configs["lr_scheduler"]["num_warmup_steps"] //= accelerator.num_processes # reset for multi-gpu
# Prepare everything with `accelerator`
transformer, optimizer, lr_scheduler, train_loader, val_loader, random_val_loader = accelerator.prepare(
transformer, optimizer, lr_scheduler, train_loader, val_loader, random_val_loader
)
# Set classes explicitly for everything
transformer: DistributedDataParallel
optimizer: AcceleratedOptimizer
lr_scheduler: AcceleratedScheduler
train_loader: DataLoaderShard
val_loader: DataLoaderShard
random_val_loader: DataLoaderShard
if args.use_ema:
ema_transformer.to(accelerator.device)
# For mixed precision training we cast all non-trainable weigths to half-precision
# as these weights are only used for inference, keeping weights in full precision is not required.
weight_dtype = torch.float32
if accelerator.mixed_precision == "fp16":
weight_dtype = torch.float16
elif accelerator.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
# Move `vae` and `image_encoder_dinov2` to gpu and cast to `weight_dtype`
vae.to(accelerator.device, dtype=weight_dtype)
image_encoder_dinov2.to(accelerator.device, dtype=weight_dtype)
# Training configs after distribution and accumulation setup
updated_steps_per_epoch = math.ceil(len(train_loader) / args.gradient_accumulation_steps)
total_updated_steps = configs["lr_scheduler"]["total_steps"]
if args.max_train_steps is None:
args.max_train_steps = total_updated_steps
assert configs["train"]["epochs"] * updated_steps_per_epoch == total_updated_steps
if accelerator.num_processes > 1 and accelerator.is_main_process:
print()
accelerator.wait_for_everyone()
logger.info(f"Total batch size: [{total_batch_size}]")
logger.info(f"Learning rate: [{configs['optimizer']['lr']}]")
logger.info(f"Gradient Accumulation steps: [{args.gradient_accumulation_steps}]")
logger.info(f"Total epochs: [{configs['train']['epochs']}]")
logger.info(f"Total steps: [{total_updated_steps}]")
logger.info(f"Steps for updating per epoch: [{updated_steps_per_epoch}]")
logger.info(f"Steps for validation: [{len(val_loader)}]\n")
# (Optional) Load checkpoint
global_update_step = 0
if args.resume_from_iter is not None:
if args.resume_from_iter < 0:
args.resume_from_iter = int(sorted(os.listdir(ckpt_dir))[-1])
logger.info(f"Load checkpoint from iteration [{args.resume_from_iter}]\n")
# Load everything
if version.parse(torch.__version__) >= version.parse("2.4.0"):
torch.serialization.add_safe_globals([
int, list, dict,
defaultdict,
Any,
DictConfig, ListConfig, Metadata, ContainerMetadata, AnyNode
]) # avoid deserialization error when loading optimizer state
accelerator.load_state(os.path.join(ckpt_dir, f"{args.resume_from_iter:06d}")) # torch < 2.4.0 here for `weights_only=False`
global_update_step = int(args.resume_from_iter)
# Save all experimental parameters and model architecture of this run to a file (args and configs)
if accelerator.is_main_process:
exp_params = save_experiment_params(args, configs, exp_dir)
save_model_architecture(accelerator.unwrap_model(transformer), exp_dir)
# WandB logger
if accelerator.is_main_process:
if args.offline_wandb:
os.environ["WANDB_MODE"] = "offline"
wandb.init(
project=PROJECT_NAME, name=args.tag,
config=exp_params, dir=exp_dir,
resume=True
)
# Wandb artifact for logging experiment information
arti_exp_info = wandb.Artifact(args.tag, type="exp_info")
arti_exp_info.add_file(os.path.join(exp_dir, "params.yaml"))
arti_exp_info.add_file(os.path.join(exp_dir, "model.txt"))
arti_exp_info.add_file(os.path.join(exp_dir, "log.txt")) # only save the log before training
wandb.log_artifact(arti_exp_info)
def get_sigmas(timesteps: Tensor, n_dim: int, dtype=torch.float32):
sigmas = noise_scheduler.sigmas.to(dtype=dtype, device=accelerator.device)
schedule_timesteps = noise_scheduler.timesteps.to(accelerator.device)
timesteps = timesteps.to(accelerator.device)
step_indices = [(schedule_timesteps == t).nonzero()[0].item() for t in timesteps]
sigma = sigmas[step_indices].flatten()
while len(sigma.shape) < n_dim:
sigma = sigma.unsqueeze(-1)
return sigma
# Start training
if accelerator.is_main_process:
print()
logger.info(f"Start training into {exp_dir}\n")
logger.logger.propagate = False # not propagate to the root logger (console)
progress_bar = tqdm(
range(total_updated_steps),
initial=global_update_step,
desc="Training",
ncols=125,
disable=not accelerator.is_main_process
)
for batch in yield_forever(train_loader):
if global_update_step == args.max_train_steps:
progress_bar.close()
logger.logger.propagate = True # propagate to the root logger (console)
if accelerator.is_main_process:
wandb.finish()
logger.info("Training finished!\n")
return
transformer.train()
with accelerator.accumulate(transformer):
images = batch["images"] # [N, H, W, 3]
with torch.no_grad():
images = feature_extractor_dinov2(images=images, return_tensors="pt").pixel_values
images = images.to(device=accelerator.device, dtype=weight_dtype)
with torch.no_grad():
image_embeds = image_encoder_dinov2(images).last_hidden_state
negative_image_embeds = torch.zeros_like(image_embeds)
part_surfaces = batch["part_surfaces"] # [N, P, 6]
part_surfaces = part_surfaces.to(device=accelerator.device, dtype=weight_dtype)
num_parts = batch["num_parts"] # [M, ] The shape of num_parts is not fixed
num_objects = num_parts.shape[0] # M
with torch.no_grad():
latents = vae.encode(
part_surfaces,
**configs["model"]["vae"]
).latent_dist.sample()
noise = torch.randn_like(latents)
# For weighting schemes where we sample timesteps non-uniformly
u = compute_density_for_timestep_sampling(
weighting_scheme=configs["train"]["weighting_scheme"],
batch_size=num_objects,
logit_mean=configs["train"]["logit_mean"],
logit_std=configs["train"]["logit_std"],
mode_scale=configs["train"]["mode_scale"],
)
indices = (u * noise_scheduler.config.num_train_timesteps).long()
timesteps = noise_scheduler.timesteps[indices].to(accelerator.device) # [M, ]
# Repeat the timesteps for each part
timesteps = timesteps.repeat_interleave(num_parts) # [N, ]
sigmas = get_sigmas(timesteps, len(latents.shape), weight_dtype)
latent_model_input = noisy_latents = (1. - sigmas) * latents + sigmas * noise
if configs["train"]["cfg_dropout_prob"] > 0:
# We use the same dropout mask for the same part
dropout_mask = torch.rand(num_objects, device=accelerator.device) < configs["train"]["cfg_dropout_prob"] # [M, ]
dropout_mask = dropout_mask.repeat_interleave(num_parts) # [N, ]
if dropout_mask.any():
image_embeds[dropout_mask] = negative_image_embeds[dropout_mask]
model_pred = transformer(
hidden_states=latent_model_input,
timestep=timesteps,
encoder_hidden_states=image_embeds,
attention_kwargs={"num_parts": num_parts}
).sample
if configs["train"]["training_objective"] == "x0": # Section 5 of https://arxiv.org/abs/2206.00364
model_pred = model_pred * (-sigmas) + noisy_latents # predicted x_0
target = latents
elif configs["train"]["training_objective"] == 'v': # flow matching
target = noise - latents
elif configs["train"]["training_objective"] == '-v': # reverse flow matching
# The training objective for TripoSG is the reverse of the flow matching objective.
# It uses "different directions", i.e., the negative velocity.
# This is probably a mistake in engineering, not very harmful.
# In TripoSG's rectified flow scheduler, prev_sample = sample + (sigma - sigma_next) * model_output
# See TripoSG's scheduler https://github.com/VAST-AI-Research/TripoSG/blob/main/triposg/schedulers/scheduling_rectified_flow.py#L296
# While in diffusers's flow matching scheduler, prev_sample = sample + (sigma_next - sigma) * model_output
# See https://github.com/huggingface/diffusers/blob/main/src/diffusers/schedulers/scheduling_flow_match_euler_discrete.py#L454
target = latents - noise
else:
raise ValueError(f"Unknown training objective [{configs['train']['training_objective']}]")
# For these weighting schemes use a uniform timestep sampling, so post-weight the loss
weighting = compute_loss_weighting_for_sd3(
configs["train"]["weighting_scheme"],
sigmas
)
loss = weighting * tF.mse_loss(model_pred.float(), target.float(), reduction="none")
loss = loss.mean(dim=list(range(1, len(loss.shape))))
# Backpropagate
accelerator.backward(loss.mean())
if accelerator.sync_gradients:
accelerator.clip_grad_norm_(transformer.parameters(), args.max_grad_norm)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
# Checks if the accelerator has performed an optimization step behind the scenes
if accelerator.sync_gradients:
# Gather the losses across all processes for logging (if we use distributed training)
loss = accelerator.gather(loss.detach()).mean()
logs = {
"loss": loss.item(),
"lr": lr_scheduler.get_last_lr()[0]
}
if args.use_ema:
ema_transformer.step(transformer.parameters())
logs.update({"ema": ema_transformer.cur_decay_value})
progress_bar.set_postfix(**logs)
progress_bar.update(1)
global_update_step += 1
logger.info(
f"[{global_update_step:06d} / {total_updated_steps:06d}] " +
f"loss: {logs['loss']:.4f}, lr: {logs['lr']:.2e}" +
f", ema: {logs['ema']:.4f}" if args.use_ema else ""
)
# Log the training progress
if (
global_update_step % configs["train"]["log_freq"] == 0
or global_update_step == 1
or global_update_step % updated_steps_per_epoch == 0 # last step of an epoch
):
if accelerator.is_main_process:
wandb.log({
"training/loss": logs["loss"],
"training/lr": logs["lr"],
}, step=global_update_step)
if args.use_ema:
wandb.log({
"training/ema": logs["ema"]
}, step=global_update_step)
# Save checkpoint
if (
global_update_step % configs["train"]["save_freq"] == 0 # 1. every `save_freq` steps
or global_update_step % (configs["train"]["save_freq_epoch"] * updated_steps_per_epoch) == 0 # 2. every `save_freq_epoch` epochs
or global_update_step == total_updated_steps # 3. last step of an epoch
# or global_update_step == 1 # 4. first step
):
gc.collect()
if accelerator.distributed_type == accelerate.utils.DistributedType.DEEPSPEED:
# DeepSpeed requires saving weights on every device; saving weights only on the main process would cause issues
accelerator.save_state(os.path.join(ckpt_dir, f"{global_update_step:06d}"))
elif accelerator.is_main_process:
accelerator.save_state(os.path.join(ckpt_dir, f"{global_update_step:06d}"))
accelerator.wait_for_everyone() # ensure all processes have finished saving
gc.collect()
# Evaluate on the validation set
if args.max_val_steps > 0 and (
(global_update_step % configs["train"]["early_eval_freq"] == 0 and global_update_step < configs["train"]["early_eval"]) # 1. more frequently at the beginning
or global_update_step % configs["train"]["eval_freq"] == 0 # 2. every `eval_freq` steps
or global_update_step % (configs["train"]["eval_freq_epoch"] * updated_steps_per_epoch) == 0 # 3. every `eval_freq_epoch` epochs
or global_update_step == total_updated_steps # 4. last step of an epoch
or global_update_step == 1 # 5. first step
):
# Use EMA parameters for evaluation
if args.use_ema:
# Store the Transformer parameters temporarily and load the EMA parameters to perform inference
ema_transformer.store(transformer.parameters())
ema_transformer.copy_to(transformer.parameters())
transformer.eval()
log_validation(
val_loader, random_val_loader,
feature_extractor_dinov2, image_encoder_dinov2,
vae, transformer,
global_update_step, eval_dir,
accelerator, logger,
args, configs
)
if args.use_ema:
# Switch back to the original Transformer parameters
ema_transformer.restore(transformer.parameters())
torch.cuda.empty_cache()
gc.collect()
@torch.no_grad()
def log_validation(
dataloader, random_dataloader,
feature_extractor_dinov2, image_encoder_dinov2,
vae, transformer,
global_step, eval_dir,
accelerator, logger,
args, configs
):
val_noise_scheduler = RectifiedFlowScheduler.from_pretrained(
configs["model"]["pretrained_model_name_or_path"],
subfolder="scheduler"
)
pipeline = PartCrafterPipeline(
vae=vae,
transformer=accelerator.unwrap_model(transformer),
scheduler=val_noise_scheduler,
feature_extractor_dinov2=feature_extractor_dinov2,
image_encoder_dinov2=image_encoder_dinov2,
)
pipeline.set_progress_bar_config(disable=True)
# pipeline.enable_xformers_memory_efficient_attention()
if args.seed >= 0:
generator = torch.Generator(device=accelerator.device).manual_seed(args.seed)
else:
generator = None
val_progress_bar = tqdm(
range(len(dataloader)) if args.max_val_steps is None else range(args.max_val_steps),
desc=f"Validation [{global_step:06d}]",
ncols=125,
disable=not accelerator.is_main_process
)
medias_dictlist, metrics_dictlist = defaultdict(list), defaultdict(list)
val_dataloder, random_val_dataloader = yield_forever(dataloader), yield_forever(random_dataloader)
val_step = 0
while val_step < args.max_val_steps:
if val_step < args.max_val_steps // 2:
# fix the first half
batch = next(val_dataloder)
else:
# randomly sample the next batch
batch = next(random_val_dataloader)
images = batch["images"]
if len(images.shape) == 5:
images = images[0] # (1, N, H, W, 3) -> (N, H, W, 3)
images = [Image.fromarray(image) for image in images.cpu().numpy()]
part_surfaces = batch["part_surfaces"].cpu().numpy()
if len(part_surfaces.shape) == 4:
part_surfaces = part_surfaces[0] # (1, N, P, 6) -> (N, P, 6)
N = len(images)
val_progress_bar.set_postfix(
{"num_parts": N}
)
with torch.autocast("cuda", torch.float16):
for guidance_scale in sorted(args.val_guidance_scales):
pred_part_meshes = pipeline(
images,
num_inference_steps=configs['val']['num_inference_steps'],
num_tokens=configs['model']['vae']['num_tokens'],
guidance_scale=guidance_scale,
attention_kwargs={"num_parts": N},
generator=generator,
max_num_expanded_coords=configs['val']['max_num_expanded_coords'],
use_flash_decoder=configs['val']['use_flash_decoder'],
).meshes
# Save the generated meshes
if accelerator.is_main_process:
local_eval_dir = os.path.join(eval_dir, f"{global_step:06d}", f"guidance_scale_{guidance_scale:.1f}")
os.makedirs(local_eval_dir, exist_ok=True)
rendered_images_list, rendered_normals_list = [], []
# 1. save the gt image
images[0].save(os.path.join(local_eval_dir, f"{val_step:04d}.png"))
# 2. save the generated part meshes
for n in range(N):
if pred_part_meshes[n] is None:
# If the generated mesh is None (decoing error), use a dummy mesh
pred_part_meshes[n] = trimesh.Trimesh(vertices=[[0, 0, 0]], faces=[[0, 0, 0]])
pred_part_meshes[n].export(os.path.join(local_eval_dir, f"{val_step:04d}_{n:02d}.glb"))
# 3. render the generated mesh and save the rendered images
pred_mesh = get_colored_mesh_composition(pred_part_meshes)
rendered_images: List[Image.Image] = render_views_around_mesh(
pred_mesh,
num_views=configs['val']['rendering']['num_views'],
radius=configs['val']['rendering']['radius'],
)
rendered_normals: List[Image.Image] = render_normal_views_around_mesh(
pred_mesh,
num_views=configs['val']['rendering']['num_views'],
radius=configs['val']['rendering']['radius'],
)
export_renderings(
rendered_images,
os.path.join(local_eval_dir, f"{val_step:04d}.gif"),
fps=configs['val']['rendering']['fps']
)
export_renderings(
rendered_normals,
os.path.join(local_eval_dir, f"{val_step:04d}_normals.gif"),
fps=configs['val']['rendering']['fps']
)
rendered_images_list.append(rendered_images)
rendered_normals_list.append(rendered_normals)
medias_dictlist[f"guidance_scale_{guidance_scale:.1f}/gt_image"] += [images[0]] # List[Image.Image] TODO: support batch size > 1
medias_dictlist[f"guidance_scale_{guidance_scale:.1f}/pred_rendered_images"] += rendered_images_list # List[List[Image.Image]]
medias_dictlist[f"guidance_scale_{guidance_scale:.1f}/pred_rendered_normals"] += rendered_normals_list # List[List[Image.Image]]
################################ Compute generation metrics ################################
parts_chamfer_distances, parts_f_scores = [], []
for n in range(N):
# gt_part_surface = part_surfaces[n]
# pred_part_mesh = pred_part_meshes[n]
# if pred_part_mesh is None:
# # If the generated mesh is None (decoing error), use a dummy mesh
# pred_part_mesh = trimesh.Trimesh(vertices=[[0, 0, 0]], faces=[[0, 0, 0]])
# part_cd, part_f = compute_cd_and_f_score_in_training(
# gt_part_surface, pred_part_mesh,
# num_samples=configs['val']['metric']['cd_num_samples'],
# threshold=configs['val']['metric']['f1_score_threshold'],
# metric=configs['val']['metric']['cd_metric']
# )
# # avoid nan
# part_cd = configs['val']['metric']['default_cd'] if np.isnan(part_cd) else part_cd
# part_f = configs['val']['metric']['default_f1'] if np.isnan(part_f) else part_f
# parts_chamfer_distances.append(part_cd)
# parts_f_scores.append(part_f)
# TODO: Fix this
# Disable chamfer distance and F1 score for now
parts_chamfer_distances.append(0.0)
parts_f_scores.append(0.0)
parts_chamfer_distances = torch.tensor(parts_chamfer_distances, device=accelerator.device)
parts_f_scores = torch.tensor(parts_f_scores, device=accelerator.device)
metrics_dictlist[f"parts_chamfer_distance_cfg{guidance_scale:.1f}"].append(parts_chamfer_distances.mean())
metrics_dictlist[f"parts_f_score_cfg{guidance_scale:.1f}"].append(parts_f_scores.mean())
# Only log the last (biggest) cfg metrics in the progress bar
val_logs = {
"parts_chamfer_distance": parts_chamfer_distances.mean().item(),
"parts_f_score": parts_f_scores.mean().item(),
}
val_progress_bar.set_postfix(**val_logs)
logger.info(
f"Validation [{val_step:02d}/{args.max_val_steps:02d}] " +
f"parts_chamfer_distance: {val_logs['parts_chamfer_distance']:.4f}, parts_f_score: {val_logs['parts_f_score']:.4f}"
)
logger.info(
f"parts_chamfer_distances: {[f'{x:.4f}' for x in parts_chamfer_distances.tolist()]}"
)
logger.info(
f"parts_f_scores: {[f'{x:.4f}' for x in parts_f_scores.tolist()]}"
)
val_step += 1
val_progress_bar.update(1)
val_progress_bar.close()
if accelerator.is_main_process:
for key, value in medias_dictlist.items():
if isinstance(value[0], Image.Image): # assuming gt_image
image_grid = make_grid_for_images_or_videos(
value,
nrow=configs['val']['nrow'],
return_type='pil',
)
image_grid.save(os.path.join(eval_dir, f"{global_step:06d}", f"{key}.png"))
wandb.log({f"validation/{key}": wandb.Image(image_grid)}, step=global_step)
else: # assuming pred_rendered_images or pred_rendered_normals
image_grids = make_grid_for_images_or_videos(
value,
nrow=configs['val']['nrow'],
return_type='ndarray',
)
wandb.log({
f"validation/{key}": wandb.Video(
image_grids,
fps=configs['val']['rendering']['fps'],
format="gif"
)}, step=global_step)
image_grids = [Image.fromarray(image_grid.transpose(1, 2, 0)) for image_grid in image_grids]
export_renderings(
image_grids,
os.path.join(eval_dir, f"{global_step:06d}", f"{key}.gif"),
fps=configs['val']['rendering']['fps']
)
for k, v in metrics_dictlist.items():
wandb.log({f"validation/{k}": torch.tensor(v).mean().item()}, step=global_step)
if __name__ == "__main__":
main()