SuperResolution / app.py
alexnasa's picture
Update app.py
c18d8a2 verified
import spaces
import gradio as gr
import os
import sys
from typing import List
# sys.path.append(os.getcwd())
import numpy as np
from PIL import Image
import torch
from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor
from qwen_vl_utils import process_vision_info
from gradio_imageslider import ImageSlider
print(f'torch version:{torch.__version__}')
import torch.utils.checkpoint
from pytorch_lightning import seed_everything
from diffusers import AutoencoderKL, DDIMScheduler
from diffusers.utils import check_min_version
from diffusers.utils.import_utils import is_xformers_available
from transformers import CLIPTextModel, CLIPTokenizer, CLIPImageProcessor
from huggingface_hub import hf_hub_download, snapshot_download
from pipelines.pipeline_seesr import StableDiffusionControlNetPipeline
from utils.wavelet_color_fix import wavelet_color_fix, adain_color_fix
from ram.models.ram_lora import ram
from ram import inference_ram as inference
from torchvision import transforms
from models.controlnet import ControlNetModel
from models.unet_2d_condition import UNet2DConditionModel
# VLM_NAME = "Qwen/Qwen2.5-VL-3B-Instruct"
# vlm_model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
# VLM_NAME,
# torch_dtype="auto",
# device_map="auto" # immediately dispatches layers onto available GPUs
# )
# vlm_processor = AutoProcessor.from_pretrained(VLM_NAME)
def _generate_vlm_prompt(
vlm_model: Qwen2_5_VLForConditionalGeneration,
vlm_processor: AutoProcessor,
process_vision_info,
pil_image: Image.Image,
device: str = "cuda"
) -> str:
"""
Given two PIL.Image inputs:
- prev_pil: the “full” image at the previous recursion.
- zoomed_pil: the cropped+resized (zoom) image for this step.
Returns a single “recursive_multiscale” prompt string.
"""
message_text = (
"The give a detailed description of this image."
"describe each element with fine details."
)
messages = [
{"role": "system", "content": message_text},
{
"role": "user",
"content": [
{"type": "image", "image": pil_image},
],
},
]
text = vlm_processor.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages)
inputs = vlm_processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
).to(device)
generated = vlm_model.generate(**inputs, max_new_tokens=128)
trimmed = [
out_ids[len(in_ids):]
for in_ids, out_ids in zip(inputs.input_ids, generated)
]
out_text = vlm_processor.batch_decode(
trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)[0]
return out_text.strip()
tensor_transforms = transforms.Compose([
transforms.ToTensor(),
])
ram_transforms = transforms.Compose([
transforms.Resize((384, 384)),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
snapshot_download(
repo_id="alexnasa/SEESR",
local_dir="preset/models"
)
snapshot_download(
repo_id="stabilityai/stable-diffusion-2-1-base",
local_dir="preset/models/stable-diffusion-2-1-base"
)
snapshot_download(
repo_id="xinyu1205/recognize_anything_model",
local_dir="preset/models/"
)
# Load scheduler, tokenizer and models.
pretrained_model_path = 'preset/models/stable-diffusion-2-1-base'
seesr_model_path = 'preset/models/seesr'
scheduler = DDIMScheduler.from_pretrained(pretrained_model_path, subfolder="scheduler")
text_encoder = CLIPTextModel.from_pretrained(pretrained_model_path, subfolder="text_encoder")
tokenizer = CLIPTokenizer.from_pretrained(pretrained_model_path, subfolder="tokenizer")
vae = AutoencoderKL.from_pretrained(pretrained_model_path, subfolder="vae")
feature_extractor = CLIPImageProcessor.from_pretrained(f"{pretrained_model_path}/feature_extractor")
unet = UNet2DConditionModel.from_pretrained(seesr_model_path, subfolder="unet")
controlnet = ControlNetModel.from_pretrained(seesr_model_path, subfolder="controlnet")
# Freeze vae and text_encoder
vae.requires_grad_(False)
text_encoder.requires_grad_(False)
unet.requires_grad_(False)
controlnet.requires_grad_(False)
# unet.to("cuda")
# controlnet.to("cuda")
# unet.enable_xformers_memory_efficient_attention()
# controlnet.enable_xformers_memory_efficient_attention()
# Get the validation pipeline
validation_pipeline = StableDiffusionControlNetPipeline(
vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, feature_extractor=None,
unet=unet, controlnet=controlnet, scheduler=scheduler, safety_checker=None, requires_safety_checker=False,
)
validation_pipeline._init_tiled_vae(encoder_tile_size=1024,
decoder_tile_size=224)
weight_dtype = torch.float16
device = "cuda"
# Move text_encode and vae to gpu and cast to weight_dtype
text_encoder.to(device, dtype=weight_dtype)
vae.to(device, dtype=weight_dtype)
unet.to(device, dtype=weight_dtype)
controlnet.to(device, dtype=weight_dtype)
tag_model = ram(pretrained='preset/models/ram_swin_large_14m.pth',
pretrained_condition='preset/models/DAPE.pth',
image_size=384,
vit='swin_l')
tag_model.eval()
tag_model.to(device, dtype=weight_dtype)
def preprocess_image(input_image: Image.Image) -> Image.Image:
img = input_image.copy()
img.thumbnail((512, 512), Image.Resampling.BILINEAR)
return img
@spaces.GPU(duration=130)
def preprocess_n_magnify(input_image: Image.Image, progress=gr.Progress(track_tqdm=True),):
"""
Preprocess the input image and perform a single-step 4× magnification using the SeeSR pipeline.
This function first resizes the input to fit within a 512×512 thumbnail, then applies the full
magnification through ControlNet-guided diffusion—to produce a high-resolution, 4× upscaled image.
Args:
input_image (PIL.Image.Image): The source image to preprocess and magnify.
Returns:
tuple[PIL.Image.Image, PIL.Image.Image]:
- The resized (thumbnail) version of the input.
- The final 4× magnified output image.
"""
processed_img = preprocess_image(input_image)
img, magnified_img = magnify(processed_img, progress=progress)
return (img, magnified_img)
@spaces.GPU()
def magnify(
input_image: Image.Image,
user_prompt = "",
positive_prompt = "clean, high-resolution, 8k, best quality, masterpiece",
negative_prompt = "dotted, noise, blur, lowres, oversmooth, longbody, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality",
num_inference_steps = 50,
scale_factor = 4,
cfg_scale = 7.5,
seed = 123,
latent_tiled_size = 320,
latent_tiled_overlap = 4,
sample_times = 1,
progress=gr.Progress(track_tqdm=True),
):
process_size = 512
resize_preproc = transforms.Compose([
transforms.Resize(process_size, interpolation=transforms.InterpolationMode.BILINEAR),
])
# user_prompt = _generate_vlm_prompt(
# vlm_model=vlm_model,
# vlm_processor=vlm_processor,
# process_vision_info=process_vision_info,
# pil_image=input_image,
# device=device,
# )
# with torch.no_grad():
seed_everything(seed)
generator = torch.Generator(device=device)
validation_prompt = ""
lq = tensor_transforms(input_image).unsqueeze(0).to(device).half()
lq = ram_transforms(lq)
res = inference(lq, tag_model)
ram_encoder_hidden_states = tag_model.generate_image_embeds(lq)
validation_prompt = f"{res[0]}, {positive_prompt},"
validation_prompt = validation_prompt if user_prompt=='' else f"{user_prompt}, {validation_prompt}"
ori_width, ori_height = input_image.size
resize_flag = False
rscale = scale_factor
input_image = input_image.resize((int(input_image.size[0] * rscale), int(input_image.size[1] * rscale)))
if min(input_image.size) < process_size:
input_image = resize_preproc(input_image)
input_image = input_image.resize((input_image.size[0] // 8 * 8, input_image.size[1] // 8 * 8))
width, height = input_image.size
resize_flag = True #
images = []
for _ in range(sample_times):
try:
with torch.autocast("cuda"):
image = validation_pipeline(
validation_prompt, input_image, negative_prompt=negative_prompt,
num_inference_steps=num_inference_steps, generator=generator,
height=height, width=width,
guidance_scale=cfg_scale, conditioning_scale=1,
start_point='lr', start_steps=999,ram_encoder_hidden_states=ram_encoder_hidden_states,
latent_tiled_size=latent_tiled_size, latent_tiled_overlap=latent_tiled_overlap,
).images[0]
if True: # alpha<1.0:
image = wavelet_color_fix(image, input_image)
if resize_flag:
image = image.resize((ori_width * rscale, ori_height * rscale))
except Exception as e:
print(e)
image = Image.new(mode="RGB", size=(512, 512))
images.append(np.array(image))
return input_image, images[0]
css = """
#col-container {
margin: 0 auto;
max-width: 1024px;
}
"""
theme = gr.themes.Ocean()
with gr.Blocks(css=css, theme=theme) as demo:
with gr.Column(elem_id="col-container"):
with gr.Row():
gr.HTML(
"""
<div style="text-align: center;">
<p style="font-size:16px; display: inline; margin: 0;">
<strong>🖼️ Super-Resolution</strong>
</p>
</div>
"""
)
with gr.Row():
with gr.Column():
input_image = gr.Image(type="pil", height=512)
run_button = gr.Button("🔎 Magnify 4x", variant="primary")
duration_time = gr.Text(label="duration time", value=60, visible=False)
with gr.Accordion("Options", visible=False):
user_prompt = gr.Textbox(label="User Prompt", value="")
positive_prompt = gr.Textbox(label="Positive Prompt", value="clean, high-resolution, 8k, best quality, masterpiece")
negative_prompt = gr.Textbox(
label="Negative Prompt",
value="dotted, noise, blur, lowres, oversmooth, longbody, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality"
)
cfg_scale = gr.Slider(label="Classifier Free Guidance Scale (Set to 1.0 in sd-turbo)", minimum=1, maximum=10, value=7.5, step=0)
num_inference_steps = gr.Slider(label="Inference Steps", minimum=2, maximum=100, value=50, step=1)
seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, value=231)
sample_times = gr.Slider(label="Sample Times", minimum=1, maximum=10, step=1, value=1)
latent_tiled_size = gr.Slider(label="Diffusion Tile Size", minimum=128, maximum=480, value=320, step=1)
latent_tiled_overlap = gr.Slider(label="Diffusion Tile Overlap", minimum=4, maximum=16, value=4, step=1)
scale_factor = gr.Number(label="SR Scale", value=4)
with gr.Column():
result_gallery = ImageSlider(
interactive=False,
label="Magnified",
position=0.5
)
examples = gr.Examples(
examples=[
[
"preset/datasets/test_datasets/179.png",
],
[
"preset/datasets/test_datasets/cinema.png",
],
[
"preset/datasets/test_datasets/cartoon.png",
],
],
inputs=[
input_image,
],
outputs=[result_gallery],
fn=preprocess_n_magnify,
cache_examples=True,
)
inputs = [
input_image,
]
run_button.click(fn=preprocess_n_magnify, inputs=input_image, outputs=[result_gallery])
input_image.upload(fn=preprocess_image,inputs=input_image, outputs=input_image, show_api=False)
demo.launch(share=True, mcp_server=True)