Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
import gradio as gr | |
import os | |
import sys | |
from typing import List | |
# sys.path.append(os.getcwd()) | |
import numpy as np | |
from PIL import Image | |
import torch | |
from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor | |
from qwen_vl_utils import process_vision_info | |
from gradio_imageslider import ImageSlider | |
print(f'torch version:{torch.__version__}') | |
import torch.utils.checkpoint | |
from pytorch_lightning import seed_everything | |
from diffusers import AutoencoderKL, DDIMScheduler | |
from diffusers.utils import check_min_version | |
from diffusers.utils.import_utils import is_xformers_available | |
from transformers import CLIPTextModel, CLIPTokenizer, CLIPImageProcessor | |
from huggingface_hub import hf_hub_download, snapshot_download | |
from pipelines.pipeline_seesr import StableDiffusionControlNetPipeline | |
from utils.wavelet_color_fix import wavelet_color_fix, adain_color_fix | |
from ram.models.ram_lora import ram | |
from ram import inference_ram as inference | |
from torchvision import transforms | |
from models.controlnet import ControlNetModel | |
from models.unet_2d_condition import UNet2DConditionModel | |
# VLM_NAME = "Qwen/Qwen2.5-VL-3B-Instruct" | |
# vlm_model = Qwen2_5_VLForConditionalGeneration.from_pretrained( | |
# VLM_NAME, | |
# torch_dtype="auto", | |
# device_map="auto" # immediately dispatches layers onto available GPUs | |
# ) | |
# vlm_processor = AutoProcessor.from_pretrained(VLM_NAME) | |
def _generate_vlm_prompt( | |
vlm_model: Qwen2_5_VLForConditionalGeneration, | |
vlm_processor: AutoProcessor, | |
process_vision_info, | |
pil_image: Image.Image, | |
device: str = "cuda" | |
) -> str: | |
""" | |
Given two PIL.Image inputs: | |
- prev_pil: the “full” image at the previous recursion. | |
- zoomed_pil: the cropped+resized (zoom) image for this step. | |
Returns a single “recursive_multiscale” prompt string. | |
""" | |
message_text = ( | |
"The give a detailed description of this image." | |
"describe each element with fine details." | |
) | |
messages = [ | |
{"role": "system", "content": message_text}, | |
{ | |
"role": "user", | |
"content": [ | |
{"type": "image", "image": pil_image}, | |
], | |
}, | |
] | |
text = vlm_processor.apply_chat_template( | |
messages, | |
tokenize=False, | |
add_generation_prompt=True | |
) | |
image_inputs, video_inputs = process_vision_info(messages) | |
inputs = vlm_processor( | |
text=[text], | |
images=image_inputs, | |
videos=video_inputs, | |
padding=True, | |
return_tensors="pt", | |
).to(device) | |
generated = vlm_model.generate(**inputs, max_new_tokens=128) | |
trimmed = [ | |
out_ids[len(in_ids):] | |
for in_ids, out_ids in zip(inputs.input_ids, generated) | |
] | |
out_text = vlm_processor.batch_decode( | |
trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False | |
)[0] | |
return out_text.strip() | |
tensor_transforms = transforms.Compose([ | |
transforms.ToTensor(), | |
]) | |
ram_transforms = transforms.Compose([ | |
transforms.Resize((384, 384)), | |
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) | |
]) | |
snapshot_download( | |
repo_id="alexnasa/SEESR", | |
local_dir="preset/models" | |
) | |
snapshot_download( | |
repo_id="stabilityai/stable-diffusion-2-1-base", | |
local_dir="preset/models/stable-diffusion-2-1-base" | |
) | |
snapshot_download( | |
repo_id="xinyu1205/recognize_anything_model", | |
local_dir="preset/models/" | |
) | |
# Load scheduler, tokenizer and models. | |
pretrained_model_path = 'preset/models/stable-diffusion-2-1-base' | |
seesr_model_path = 'preset/models/seesr' | |
scheduler = DDIMScheduler.from_pretrained(pretrained_model_path, subfolder="scheduler") | |
text_encoder = CLIPTextModel.from_pretrained(pretrained_model_path, subfolder="text_encoder") | |
tokenizer = CLIPTokenizer.from_pretrained(pretrained_model_path, subfolder="tokenizer") | |
vae = AutoencoderKL.from_pretrained(pretrained_model_path, subfolder="vae") | |
feature_extractor = CLIPImageProcessor.from_pretrained(f"{pretrained_model_path}/feature_extractor") | |
unet = UNet2DConditionModel.from_pretrained(seesr_model_path, subfolder="unet") | |
controlnet = ControlNetModel.from_pretrained(seesr_model_path, subfolder="controlnet") | |
# Freeze vae and text_encoder | |
vae.requires_grad_(False) | |
text_encoder.requires_grad_(False) | |
unet.requires_grad_(False) | |
controlnet.requires_grad_(False) | |
# unet.to("cuda") | |
# controlnet.to("cuda") | |
# unet.enable_xformers_memory_efficient_attention() | |
# controlnet.enable_xformers_memory_efficient_attention() | |
# Get the validation pipeline | |
validation_pipeline = StableDiffusionControlNetPipeline( | |
vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, feature_extractor=None, | |
unet=unet, controlnet=controlnet, scheduler=scheduler, safety_checker=None, requires_safety_checker=False, | |
) | |
validation_pipeline._init_tiled_vae(encoder_tile_size=1024, | |
decoder_tile_size=224) | |
weight_dtype = torch.float16 | |
device = "cuda" | |
# Move text_encode and vae to gpu and cast to weight_dtype | |
text_encoder.to(device, dtype=weight_dtype) | |
vae.to(device, dtype=weight_dtype) | |
unet.to(device, dtype=weight_dtype) | |
controlnet.to(device, dtype=weight_dtype) | |
tag_model = ram(pretrained='preset/models/ram_swin_large_14m.pth', | |
pretrained_condition='preset/models/DAPE.pth', | |
image_size=384, | |
vit='swin_l') | |
tag_model.eval() | |
tag_model.to(device, dtype=weight_dtype) | |
def preprocess_image(input_image: Image.Image) -> Image.Image: | |
img = input_image.copy() | |
img.thumbnail((512, 512), Image.Resampling.BILINEAR) | |
return img | |
def preprocess_n_magnify(input_image: Image.Image, progress=gr.Progress(track_tqdm=True),): | |
""" | |
Preprocess the input image and perform a single-step 4× magnification using the SeeSR pipeline. | |
This function first resizes the input to fit within a 512×512 thumbnail, then applies the full | |
magnification through ControlNet-guided diffusion—to produce a high-resolution, 4× upscaled image. | |
Args: | |
input_image (PIL.Image.Image): The source image to preprocess and magnify. | |
Returns: | |
tuple[PIL.Image.Image, PIL.Image.Image]: | |
- The resized (thumbnail) version of the input. | |
- The final 4× magnified output image. | |
""" | |
processed_img = preprocess_image(input_image) | |
img, magnified_img = magnify(processed_img, progress=progress) | |
return (img, magnified_img) | |
def magnify( | |
input_image: Image.Image, | |
user_prompt = "", | |
positive_prompt = "clean, high-resolution, 8k, best quality, masterpiece", | |
negative_prompt = "dotted, noise, blur, lowres, oversmooth, longbody, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality", | |
num_inference_steps = 50, | |
scale_factor = 4, | |
cfg_scale = 7.5, | |
seed = 123, | |
latent_tiled_size = 320, | |
latent_tiled_overlap = 4, | |
sample_times = 1, | |
progress=gr.Progress(track_tqdm=True), | |
): | |
process_size = 512 | |
resize_preproc = transforms.Compose([ | |
transforms.Resize(process_size, interpolation=transforms.InterpolationMode.BILINEAR), | |
]) | |
# user_prompt = _generate_vlm_prompt( | |
# vlm_model=vlm_model, | |
# vlm_processor=vlm_processor, | |
# process_vision_info=process_vision_info, | |
# pil_image=input_image, | |
# device=device, | |
# ) | |
# with torch.no_grad(): | |
seed_everything(seed) | |
generator = torch.Generator(device=device) | |
validation_prompt = "" | |
lq = tensor_transforms(input_image).unsqueeze(0).to(device).half() | |
lq = ram_transforms(lq) | |
res = inference(lq, tag_model) | |
ram_encoder_hidden_states = tag_model.generate_image_embeds(lq) | |
validation_prompt = f"{res[0]}, {positive_prompt}," | |
validation_prompt = validation_prompt if user_prompt=='' else f"{user_prompt}, {validation_prompt}" | |
ori_width, ori_height = input_image.size | |
resize_flag = False | |
rscale = scale_factor | |
input_image = input_image.resize((int(input_image.size[0] * rscale), int(input_image.size[1] * rscale))) | |
if min(input_image.size) < process_size: | |
input_image = resize_preproc(input_image) | |
input_image = input_image.resize((input_image.size[0] // 8 * 8, input_image.size[1] // 8 * 8)) | |
width, height = input_image.size | |
resize_flag = True # | |
images = [] | |
for _ in range(sample_times): | |
try: | |
with torch.autocast("cuda"): | |
image = validation_pipeline( | |
validation_prompt, input_image, negative_prompt=negative_prompt, | |
num_inference_steps=num_inference_steps, generator=generator, | |
height=height, width=width, | |
guidance_scale=cfg_scale, conditioning_scale=1, | |
start_point='lr', start_steps=999,ram_encoder_hidden_states=ram_encoder_hidden_states, | |
latent_tiled_size=latent_tiled_size, latent_tiled_overlap=latent_tiled_overlap, | |
).images[0] | |
if True: # alpha<1.0: | |
image = wavelet_color_fix(image, input_image) | |
if resize_flag: | |
image = image.resize((ori_width * rscale, ori_height * rscale)) | |
except Exception as e: | |
print(e) | |
image = Image.new(mode="RGB", size=(512, 512)) | |
images.append(np.array(image)) | |
return input_image, images[0] | |
css = """ | |
#col-container { | |
margin: 0 auto; | |
max-width: 1024px; | |
} | |
""" | |
theme = gr.themes.Ocean() | |
with gr.Blocks(css=css, theme=theme) as demo: | |
with gr.Column(elem_id="col-container"): | |
with gr.Row(): | |
gr.HTML( | |
""" | |
<div style="text-align: center;"> | |
<p style="font-size:16px; display: inline; margin: 0;"> | |
<strong>🖼️ Super-Resolution</strong> | |
</p> | |
</div> | |
""" | |
) | |
with gr.Row(): | |
with gr.Column(): | |
input_image = gr.Image(type="pil", height=512) | |
run_button = gr.Button("🔎 Magnify 4x", variant="primary") | |
duration_time = gr.Text(label="duration time", value=60, visible=False) | |
with gr.Accordion("Options", visible=False): | |
user_prompt = gr.Textbox(label="User Prompt", value="") | |
positive_prompt = gr.Textbox(label="Positive Prompt", value="clean, high-resolution, 8k, best quality, masterpiece") | |
negative_prompt = gr.Textbox( | |
label="Negative Prompt", | |
value="dotted, noise, blur, lowres, oversmooth, longbody, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality" | |
) | |
cfg_scale = gr.Slider(label="Classifier Free Guidance Scale (Set to 1.0 in sd-turbo)", minimum=1, maximum=10, value=7.5, step=0) | |
num_inference_steps = gr.Slider(label="Inference Steps", minimum=2, maximum=100, value=50, step=1) | |
seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, value=231) | |
sample_times = gr.Slider(label="Sample Times", minimum=1, maximum=10, step=1, value=1) | |
latent_tiled_size = gr.Slider(label="Diffusion Tile Size", minimum=128, maximum=480, value=320, step=1) | |
latent_tiled_overlap = gr.Slider(label="Diffusion Tile Overlap", minimum=4, maximum=16, value=4, step=1) | |
scale_factor = gr.Number(label="SR Scale", value=4) | |
with gr.Column(): | |
result_gallery = ImageSlider( | |
interactive=False, | |
label="Magnified", | |
position=0.5 | |
) | |
examples = gr.Examples( | |
examples=[ | |
[ | |
"preset/datasets/test_datasets/179.png", | |
], | |
[ | |
"preset/datasets/test_datasets/cinema.png", | |
], | |
[ | |
"preset/datasets/test_datasets/cartoon.png", | |
], | |
], | |
inputs=[ | |
input_image, | |
], | |
outputs=[result_gallery], | |
fn=preprocess_n_magnify, | |
cache_examples=True, | |
) | |
inputs = [ | |
input_image, | |
] | |
run_button.click(fn=preprocess_n_magnify, inputs=input_image, outputs=[result_gallery]) | |
input_image.upload(fn=preprocess_image,inputs=input_image, outputs=input_image, show_api=False) | |
demo.launch(share=True, mcp_server=True) |