Spaces:
Running
on
Zero
Running
on
Zero
from typing import Dict, List, Optional | |
import torch | |
import torch.nn as nn | |
from transformers import AutoProcessor, AutoModel | |
from multi_token.data_tools import load_video | |
from multi_token.modalities.base_modality import Modality | |
from multi_token.modalities.projectors import ( | |
build_mlp_vector_projector, | |
) | |
OUTPUT_EMB_SIZE = 512 | |
class XCLIPVideoModule(nn.Module): | |
def __init__(self, model_name_or_path: str): | |
super().__init__() | |
self.model_name_or_path = model_name_or_path | |
self.model = None | |
self.processor = None | |
self.load_model() | |
def load_model(self): | |
self.model = AutoModel.from_pretrained(self.model_name_or_path) | |
self.processor = AutoProcessor.from_pretrained(self.model_name_or_path) | |
self.model.requires_grad_(False) | |
def forward(self, video_inputs) -> torch.Tensor: | |
with torch.no_grad(): | |
outputs = self.model(**(video_inputs.to(device=self.device))) | |
emb = outputs.video_embeds.to(device=self.device, dtype=self.dtype).view( | |
-1, 1, OUTPUT_EMB_SIZE | |
) | |
return emb | |
def dtype(self): | |
return self.model.dtype | |
def device(self): | |
return self.model.device | |
class XCLIPVideoModality(Modality): | |
def __init__( | |
self, | |
model_name_or_path: str = "microsoft/xclip-base-patch32", | |
num_projector_layers: int = 2, | |
num_tokens_output: int = 10, | |
): | |
self.model_name_or_path = model_name_or_path | |
self.module = XCLIPVideoModule(model_name_or_path=self.model_name_or_path) | |
self.num_projector_layers = num_projector_layers | |
self.num_tokens_output = num_tokens_output | |
def build_projector(self, lm_hidden_size: int) -> nn.Module: | |
return build_mlp_vector_projector( | |
input_hidden_size=OUTPUT_EMB_SIZE, | |
lm_hidden_size=lm_hidden_size, | |
num_layers=self.num_projector_layers, | |
num_tokens=self.num_tokens_output, | |
) | |
def name(self) -> str: | |
return "video_xclip" | |
def token(self) -> str: | |
return "<video>" | |
def data_key(self) -> str: | |
return "videos" | |
def token_width(self) -> int: | |
return self.num_tokens_output | |
def to(self, dtype: torch.dtype, device: torch.device) -> "XCLIPVideoModality": | |
self.module.to(dtype=dtype, device=device) | |
return self | |
def preprocess_rows(self, rows: List[Dict]) -> List[Optional[Dict]]: | |
row_values = [] | |
for row in rows: | |
video_arrays = [ | |
load_video( | |
video_info, | |
) | |
for video_info in row[self.data_key] | |
] | |
videos_enc = self.module.processor( | |
videos=[list(video) for video in video_arrays], | |
text=["IGNORE"], | |
return_tensors="pt", | |
padding=True, | |
) | |
row_values.append(videos_enc) | |
return row_values | |
def forward(self, encoded_values: List[torch.Tensor]) -> List[torch.Tensor]: | |
video_features = [] | |
for video_batch in encoded_values: | |
video_features.append(self.module.forward(video_batch)) | |
return video_features | |