Spaces:
Running
on
Zero
Running
on
Zero
# coding=utf-8 | |
# SPDX-FileCopyrightText: Copyright (c) 2022 The torch-harmonics Authors. All rights reserved. | |
# SPDX-License-Identifier: BSD-3-Clause | |
# | |
# Redistribution and use in source and binary forms, with or without | |
# modification, are permitted provided that the following conditions are met: | |
# | |
# 1. Redistributions of source code must retain the above copyright notice, this | |
# list of conditions and the following disclaimer. | |
# | |
# 2. Redistributions in binary form must reproduce the above copyright notice, | |
# this list of conditions and the following disclaimer in the documentation | |
# and/or other materials provided with the distribution. | |
# | |
# 3. Neither the name of the copyright holder nor the names of its | |
# contributors may be used to endorse or promote products derived from | |
# this software without specific prior written permission. | |
# | |
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | |
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE | |
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE | |
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | |
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR | |
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER | |
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, | |
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | |
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
# | |
import numpy as np | |
def _precompute_grid(n, grid="equidistant", a=0.0, b=1.0, periodic=False): | |
if (grid != "equidistant") and periodic: | |
raise ValueError(f"Periodic grid is only supported on equidistant grids.") | |
# compute coordinates | |
if grid == "equidistant": | |
xlg, wlg = trapezoidal_weights(n, a=a, b=b, periodic=periodic) | |
elif grid == "legendre-gauss": | |
xlg, wlg = legendre_gauss_weights(n, a=a, b=b) | |
elif grid == "lobatto": | |
xlg, wlg = lobatto_weights(n, a=a, b=b) | |
elif grid == "equiangular": | |
xlg, wlg = clenshaw_curtiss_weights(n, a=a, b=b) | |
else: | |
raise ValueError(f"Unknown grid type {grid}") | |
return xlg, wlg | |
def _precompute_latitudes(nlat, grid="equiangular"): | |
r""" | |
Convenience routine to precompute latitudes | |
""" | |
# compute coordinates | |
xlg, wlg = _precompute_grid(nlat, grid=grid, a=-1.0, b=1.0, periodic=False) | |
lats = np.flip(np.arccos(xlg)).copy() | |
wlg = np.flip(wlg).copy() | |
return lats, wlg | |
def trapezoidal_weights(n, a=-1.0, b=1.0, periodic=False): | |
r""" | |
Helper routine which returns equidistant nodes with trapezoidal weights | |
on the interval [a, b] | |
""" | |
xlg = np.linspace(a, b, n) | |
wlg = (b - a) / (n - 1) * np.ones(n) | |
if not periodic: | |
wlg[0] *= 0.5 | |
wlg[-1] *= 0.5 | |
return xlg, wlg | |
def legendre_gauss_weights(n, a=-1.0, b=1.0): | |
r""" | |
Helper routine which returns the Legendre-Gauss nodes and weights | |
on the interval [a, b] | |
""" | |
xlg, wlg = np.polynomial.legendre.leggauss(n) | |
xlg = (b - a) * 0.5 * xlg + (b + a) * 0.5 | |
wlg = wlg * (b - a) * 0.5 | |
return xlg, wlg | |
def lobatto_weights(n, a=-1.0, b=1.0, tol=1e-16, maxiter=100): | |
r""" | |
Helper routine which returns the Legendre-Gauss-Lobatto nodes and weights | |
on the interval [a, b] | |
""" | |
wlg = np.zeros((n,)) | |
tlg = np.zeros((n,)) | |
tmp = np.zeros((n,)) | |
# Vandermonde Matrix | |
vdm = np.zeros((n, n)) | |
# initialize Chebyshev nodes as first guess | |
for i in range(n): | |
tlg[i] = -np.cos(np.pi * i / (n - 1)) | |
tmp = 2.0 | |
for i in range(maxiter): | |
tmp = tlg | |
vdm[:, 0] = 1.0 | |
vdm[:, 1] = tlg | |
for k in range(2, n): | |
vdm[:, k] = ( | |
(2 * k - 1) * tlg * vdm[:, k - 1] - (k - 1) * vdm[:, k - 2] | |
) / k | |
tlg = tmp - (tlg * vdm[:, n - 1] - vdm[:, n - 2]) / (n * vdm[:, n - 1]) | |
if max(abs(tlg - tmp).flatten()) < tol: | |
break | |
wlg = 2.0 / ((n * (n - 1)) * (vdm[:, n - 1] ** 2)) | |
# rescale | |
tlg = (b - a) * 0.5 * tlg + (b + a) * 0.5 | |
wlg = wlg * (b - a) * 0.5 | |
return tlg, wlg | |
def clenshaw_curtiss_weights(n, a=-1.0, b=1.0): | |
r""" | |
Computation of the Clenshaw-Curtis quadrature nodes and weights. | |
This implementation follows | |
[1] Joerg Waldvogel, Fast Construction of the Fejer and Clenshaw-Curtis Quadrature Rules; BIT Numerical Mathematics, Vol. 43, No. 1, pp. 001–018. | |
""" | |
assert n > 1 | |
tcc = np.cos(np.linspace(np.pi, 0, n)) | |
if n == 2: | |
wcc = np.array([1.0, 1.0]) | |
else: | |
n1 = n - 1 | |
N = np.arange(1, n1, 2) | |
l = len(N) | |
m = n1 - l | |
v = np.concatenate([2 / N / (N - 2), 1 / N[-1:], np.zeros(m)]) | |
v = 0 - v[:-1] - v[-1:0:-1] | |
g0 = -np.ones(n1) | |
g0[l] = g0[l] + n1 | |
g0[m] = g0[m] + n1 | |
g = g0 / (n1**2 - 1 + (n1 % 2)) | |
wcc = np.fft.ifft(v + g).real | |
wcc = np.concatenate((wcc, wcc[:1])) | |
# rescale | |
tcc = (b - a) * 0.5 * tcc + (b + a) * 0.5 | |
wcc = wcc * (b - a) * 0.5 | |
return tcc, wcc | |
def fejer2_weights(n, a=-1.0, b=1.0): | |
r""" | |
Computation of the Fejer quadrature nodes and weights. | |
This implementation follows | |
[1] Joerg Waldvogel, Fast Construction of the Fejer and Clenshaw-Curtis Quadrature Rules; BIT Numerical Mathematics, Vol. 43, No. 1, pp. 001–018. | |
""" | |
assert n > 2 | |
tcc = np.cos(np.linspace(np.pi, 0, n)) | |
n1 = n - 1 | |
N = np.arange(1, n1, 2) | |
l = len(N) | |
m = n1 - l | |
v = np.concatenate([2 / N / (N - 2), 1 / N[-1:], np.zeros(m)]) | |
v = 0 - v[:-1] - v[-1:0:-1] | |
wcc = np.fft.ifft(v).real | |
wcc = np.concatenate((wcc, wcc[:1])) | |
# rescale | |
tcc = (b - a) * 0.5 * tcc + (b + a) * 0.5 | |
wcc = wcc * (b - a) * 0.5 | |
return tcc, wcc | |