GamblingDet-ID / app.py
Azzan Dwi Riski
update UI
3d4413c
import gradio as gr
import os
import re
import time
import torch
import torch.nn as nn
from PIL import Image
import requests
import easyocr
from transformers import AutoTokenizer
from torchvision import transforms
from torchvision import models
from torchvision.transforms import functional as F
import pandas as pd
from huggingface_hub import hf_hub_download
import warnings
warnings.filterwarnings("ignore")
# --- Setup ---
# Device setup
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained('indobenchmark/indobert-base-p1')
# Image transformation
class ResizePadToSquare:
def __init__(self, target_size=300):
self.target_size = target_size
def __call__(self, img):
img = img.convert("RGB")
img.thumbnail((self.target_size, self.target_size), Image.BILINEAR)
delta_w = self.target_size - img.size[0]
delta_h = self.target_size - img.size[1]
padding = (delta_w // 2, delta_h // 2, delta_w - delta_w // 2, delta_h - delta_h // 2)
img = F.pad(img, padding, fill=0, padding_mode='constant')
return img
transform = transforms.Compose([
ResizePadToSquare(300),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
])
# Screenshot folder
SCREENSHOT_DIR = "screenshots"
os.makedirs(SCREENSHOT_DIR, exist_ok=True)
# Create OCR reader
reader = easyocr.Reader(['id']) # Indonesia language
print("OCR reader initialized.")
# --- Model ---
class LateFusionModel(nn.Module):
def __init__(self, image_model, text_model):
super(LateFusionModel, self).__init__()
self.image_model = image_model
self.text_model = text_model
self.image_weight = nn.Parameter(torch.tensor(0.5))
self.text_weight = nn.Parameter(torch.tensor(0.5))
def forward(self, images, input_ids, attention_mask):
with torch.no_grad():
image_logits = self.image_model(images).squeeze(1)
text_logits = self.text_model(input_ids=input_ids, attention_mask=attention_mask).logits.squeeze(1)
weights = torch.softmax(torch.stack([self.image_weight, self.text_weight]), dim=0)
fused_logits = weights[0] * image_logits + weights[1] * text_logits
return fused_logits, image_logits, text_logits, weights
# Load model
model_path = "models/best_fusion_model.pt"
if os.path.exists(model_path):
fusion_model = torch.load(model_path, map_location=device, weights_only=False)
else:
model_path = hf_hub_download(repo_id="azzandr/gambling-fusion-model", filename="best_fusion_model.pt")
fusion_model = torch.load(model_path, map_location=device, weights_only=False)
# fusion_model = unwrap_dataparallel(fusion_model)
fusion_model.to(device)
fusion_model.eval()
print("Fusion model loaded successfully!")
# Load Image-Only Model
# Load image model from state_dict
image_model_path = "models/best_image_model_Adam_lr0.0001_bs32_state_dict.pt"
if os.path.exists(image_model_path):
image_only_model = models.efficientnet_b3(weights=models.EfficientNet_B3_Weights.DEFAULT)
num_features = image_only_model.classifier[1].in_features
image_only_model.classifier = nn.Linear(num_features, 1)
image_only_model.load_state_dict(torch.load(image_model_path, map_location=device))
image_only_model.to(device)
image_only_model.eval()
print("Image-only model loaded from state_dict successfully!")
else:
print("Image-only model not found locally. Downloading from Hugging Face Hub...")
image_model_path = hf_hub_download(repo_id="azzandr/gambling-image-model", filename="best_image_model_Adam_lr0.0001_bs32_state_dict.pt")
image_only_model = models.efficientnet_b3(weights=models.EfficientNet_B3_Weights.DEFAULT)
num_features = image_only_model.classifier[1].in_features
image_only_model.classifier = nn.Linear(num_features, 1)
image_only_model.load_state_dict(torch.load(image_model_path, map_location=device))
image_only_model.to(device)
image_only_model.eval()
print("Image-only model downloaded and loaded successfully!")
# --- Functions ---
def clean_text(text):
exceptions = {
"di", "ke", "ya"
}
# ----- BASIC CLEANING -----
text = re.sub(r"http\S+", "", text) # Hapus URL
text = re.sub(r"\n", " ", text) # Ganti newline dengan spasi
text = re.sub(r"[^a-zA-Z']", " ", text) # Hanya sisakan huruf dan apostrof
text = re.sub(r"\s{2,}", " ", text).strip().lower() # Hapus spasi ganda, ubah ke lowercase
# ----- FILTERING -----
words = text.split()
filtered_words = [
w for w in words
if (len(w) > 2 or w in exceptions) # Simpan kata >2 huruf atau ada di exceptions
]
text = ' '.join(filtered_words)
# ----- REMOVE UNWANTED PATTERNS -----
text = re.sub(r'\b[aeiou]+\b', '', text) # Hapus kata semua vokal (panjang berapa pun)
text = re.sub(r'\b[^aeiou\s]+\b', '', text) # Hapus kata semua konsonan (panjang berapa pun)
text = re.sub(r'\b\w{20,}\b', '', text) # Hapus kata sangat panjang (≥20 huruf)
text = re.sub(r'\s+', ' ', text).strip() # Bersihkan spasi ekstra
# check words number
if len(text.split()) < 5:
print(f"Cleaned text too short ({len(text.split())} words). Ignoring text.")
return "" # empty return to use image-only
return text
# Your API key
SCREENSHOT_API_KEY = os.getenv("SCREENSHOT_API_KEY") # Ambil dari environment variable
# Constants for screenshot configuration
CLOUDFLARE_CHECK_KEYWORDS = ["Checking your browser", "Just a moment", "Cloudflare"]
def ensure_http(url):
if not url.startswith(('http://', 'https://')):
return 'http://' + url
return url
def sanitize_filename(url):
return re.sub(r'[^\w\-_\. ]', '_', url)
def take_screenshot(url):
url = ensure_http(url)
filename = sanitize_filename(url) + '.png'
filepath = os.path.join(SCREENSHOT_DIR, filename)
try:
if not SCREENSHOT_API_KEY:
print("SCREENSHOT_API_KEY not found in environment.")
return None
api_url = "https://api.apiflash.com/v1/urltoimage"
# Base parameters - only using supported parameters
params = {
"access_key": SCREENSHOT_API_KEY,
"url": url,
"format": "png",
"wait_until": "network_idle",
"delay": 2,
"fail_on_status": "400,401,402,403,404,500,502,503,504",
"fresh": "true", # Don't use cached version
"response_type": "image",
"wait_for": "body" # Wait for body to be present
}
print(f"Taking screenshot of: {url}")
response = requests.get(api_url, params=params)
if response.status_code == 200:
# Check if response is actually an image
if response.headers.get('content-type', '').startswith('image'):
with open(filepath, 'wb') as f:
f.write(response.content)
print(f"Screenshot taken successfully for URL: {url}")
return filepath
else:
print(f"API returned non-image content")
return None
else:
error_msg = response.text
print(f"Screenshot failed: {error_msg}")
# Check for Cloudflare detection
if any(keyword.lower() in error_msg.lower() for keyword in CLOUDFLARE_CHECK_KEYWORDS):
print("Cloudflare challenge detected, retrying with different parameters...")
# Retry with different parameters for Cloudflare
params.update({
"wait_until": "load",
"delay": 5
})
response = requests.get(api_url, params=params)
if response.status_code == 200 and response.headers.get('content-type', '').startswith('image'):
with open(filepath, 'wb') as f:
f.write(response.content)
print(f"Screenshot taken successfully after Cloudflare retry")
return filepath
return None
except Exception as e:
print(f"Error taking screenshot: {e}")
return None
def resize_if_needed(image_path, max_mb=1, target_height=720):
file_size = os.path.getsize(image_path) / (1024 * 1024) # dalam MB
if file_size > max_mb:
try:
with Image.open(image_path) as img:
width, height = img.size
if height > target_height:
ratio = target_height / float(height)
new_width = int(float(width) * ratio)
img = img.resize((new_width, target_height), Image.Resampling.LANCZOS)
img.save(image_path, optimize=True, quality=85)
print(f"Image resized to {new_width}x{target_height}")
except Exception as e:
print(f"Resize error: {e}")
def easyocr_extract(image_path):
try:
results = reader.readtext(image_path, detail=0)
text = " ".join(results)
print(f"OCR text extracted from EasyOCR: {len(text)} characters")
return text.strip()
except Exception as e:
print(f"EasyOCR error: {e}")
return ""
# def extract_text_from_image(image_path):
# print("Skipping OCR. Forcing Image-Only prediction.")
# return ""
def extract_text_from_image(image_path):
try:
resize_if_needed(image_path, max_mb=1, target_height=720) # Tambahkan ini di awal
file_size = os.path.getsize(image_path) / (1024 * 1024) # ukuran MB
if file_size < 1:
print(f"Using OCR.Space API for image ({file_size:.2f} MB)")
api_key = os.getenv("OCR_SPACE_API_KEY")
if not api_key:
print("OCR_SPACE_API_KEY not found in environment. Using EasyOCR as fallback.")
return easyocr_extract(image_path)
with open(image_path, 'rb') as f:
payload = {
'isOverlayRequired': False,
'apikey': api_key,
'language': 'eng'
}
r = requests.post('https://api.ocr.space/parse/image',
files={'filename': f},
data=payload)
result = r.json()
if result.get('IsErroredOnProcessing', False):
print(f"OCR.Space API Error: {result.get('ErrorMessage')}")
return easyocr_extract(image_path)
text = result['ParsedResults'][0]['ParsedText']
print(f"OCR text extracted from OCR.Space: {len(text)} characters")
return text.strip()
else:
print(f"Using EasyOCR for image ({file_size:.2f} MB)")
return easyocr_extract(image_path)
except Exception as e:
print(f"OCR error: {e}")
return ""
def prepare_data_for_model(image_path, text):
image = Image.open(image_path)
image_tensor = transform(image).unsqueeze(0).to(device)
clean_text_data = clean_text(text)
encoding = tokenizer.encode_plus(
clean_text_data,
add_special_tokens=True,
max_length=128,
padding='max_length',
truncation=True,
return_tensors='pt'
)
input_ids = encoding['input_ids'].to(device)
attention_mask = encoding['attention_mask'].to(device)
return image_tensor, input_ids, attention_mask
def predict_single_url(url):
print(f"Processing URL: {url}")
screenshot_path = take_screenshot(url)
if not screenshot_path:
return f"❌ Error: Unable to capture screenshot for {url}. This may be due to:\n• Too many redirects\n• Website blocking automated access\n• Network connectivity issues\n• Invalid URL", "Screenshot capture failed", None, "", ""
text = extract_text_from_image(screenshot_path)
raw_text = text # Store raw text before cleaning
if not text.strip(): # Jika text kosong
print(f"No OCR text found for {url}. Using Image-Only Model.")
image = Image.open(screenshot_path)
image_tensor = transform(image).unsqueeze(0).to(device)
with torch.no_grad():
image_logits = image_only_model(image_tensor).squeeze(1)
image_probs = torch.sigmoid(image_logits)
threshold = 0.6
is_gambling = image_probs[0] > threshold
label = "Gambling" if is_gambling else "Non-Gambling"
confidence = image_probs[0].item() if is_gambling else 1 - image_probs[0].item()
print(f"[Image-Only] URL: {url}")
print(f"Prediction: {label} | Confidence: {confidence:.2f}\n")
return label, f"Confidence: {confidence:.2f} (Image-Only Model)", screenshot_path, raw_text, ""
else:
clean_text_data = clean_text(text)
image_tensor, input_ids, attention_mask = prepare_data_for_model(screenshot_path, text)
with torch.no_grad():
fused_logits, image_logits, text_logits, weights = fusion_model(image_tensor, input_ids, attention_mask)
fused_probs = torch.sigmoid(fused_logits)
image_probs = torch.sigmoid(image_logits)
text_probs = torch.sigmoid(text_logits)
threshold = 0.6
is_gambling = fused_probs[0] > threshold
label = "Gambling" if is_gambling else "Non-Gambling"
confidence = fused_probs[0].item() if is_gambling else 1 - fused_probs[0].item()
# ✨ Log detail
print(f"[Fusion Model] URL: {url}")
print(f"Image Model Prediction Probability: {image_probs[0]:.2f}")
print(f"Text Model Prediction Probability: {text_probs[0]:.2f}")
print(f"Fusion Final Prediction: {label} | Confidence: {confidence:.2f}\n")
return label, f"Confidence: {confidence:.2f} (Fusion Model)", screenshot_path, raw_text, clean_text_data
def predict_batch_urls(file_obj):
results = []
content = file_obj.read().decode('utf-8')
urls = [line.strip() for line in content.splitlines() if line.strip()]
for url in urls:
label, confidence, screenshot_path, raw_text, cleaned_text = predict_single_url(url)
results.append({
"url": url,
"label": label,
"confidence": confidence,
"screenshot_path": screenshot_path,
"raw_text": raw_text,
"cleaned_text": cleaned_text
})
df = pd.DataFrame(results)
print(f"Batch prediction completed for {len(urls)} URLs.")
return df
# --- Gradio App ---
with gr.Blocks() as app:
gr.Markdown("# 🕵️ Gambling Website Detection (URL Based)")
with gr.Tab("Single URL"):
url_input = gr.Textbox(label="Enter Website URL")
predict_button = gr.Button("Predict")
with gr.Row():
with gr.Column():
label_output = gr.Label()
confidence_output = gr.Textbox(label="Confidence", interactive=False)
with gr.Column():
screenshot_output = gr.Image(label="Screenshot", type="filepath")
with gr.Row():
with gr.Column():
raw_text_output = gr.Textbox(label="Raw OCR Text", lines=5)
with gr.Column():
cleaned_text_output = gr.Textbox(label="Cleaned Text", lines=5)
predict_button.click(
fn=predict_single_url,
inputs=url_input,
outputs=[
label_output,
confidence_output,
screenshot_output,
raw_text_output,
cleaned_text_output
]
)
with gr.Tab("Batch URLs"):
file_input = gr.File(label="Upload .txt file with URLs (one per line)")
batch_predict_button = gr.Button("Batch Predict")
batch_output = gr.DataFrame()
batch_predict_button.click(fn=predict_batch_urls, inputs=file_input, outputs=batch_output)
app.launch()