besucoder's picture
app.py
026c626 verified
# app.py
import gradio as gr
import wikipedia
import numpy as np
import tempfile
import os
import time
from datetime import datetime, timedelta
from gtts import gTTS
from langdetect import detect
from pydub import AudioSegment
from pydub.silence import split_on_silence
import speech_recognition as sr
from sentence_transformers import SentenceTransformer
from transformers import pipeline
import re
import torch
# --- USER MANAGEMENT SYSTEM ---
class UserManager:
def __init__(self):
self.user_data = {}
self.max_warnings = 1
self.block_duration = timedelta(days=30)
def get_user_status(self, user_id):
if user_id not in self.user_data:
return "active"
if self.user_data[user_id].get('permanently_banned', False):
return "banned"
if 'blocked_until' in self.user_data[user_id]:
if datetime.now() < self.user_data[user_id]['blocked_until']:
return "blocked"
del self.user_data[user_id]['blocked_until']
return "active"
def add_warning(self, user_id, violation_type):
if user_id not in self.user_data:
self.user_data[user_id] = {'warnings': 1, 'flags': [violation_type]}
else:
self.user_data[user_id]['warnings'] += 1
self.user_data[user_id]['flags'].append(violation_type)
if self.user_data[user_id]['warnings'] > self.max_warnings:
self.user_data[user_id]['blocked_until'] = datetime.now() + self.block_duration
return "blocked"
return "warned"
user_manager = UserManager()
# --- MODEL INITIALIZATION ---
def load_models():
models = {
'translator': pipeline('translation', model='Helsinki-NLP/opus-mt-mul-en'),
'answer_gen': pipeline('text2text-generation', model='google/flan-t5-base'),
'encoder': SentenceTransformer('paraphrase-multilingual-MiniLM-L12-v2'),
'toxic-bert': pipeline("text-classification", model="unitary/toxic-bert"),
'roberta-hate': pipeline("text-classification", model="facebook/roberta-hate-speech-dynabench-r4-target")
}
for lang in ['fr', 'ar', 'zh', 'es']:
models[f'en_to_{lang}'] = pipeline(f'translation_en_to_{lang}', model=f'Helsinki-NLP/opus-mt-en-{lang}')
return models
models = load_models()
# --- UNIVERSAL HATE SPEECH DETECTION ---
class HateSpeechDetector:
def __init__(self):
self.keyword_banks = {
'racial': ['nigger', 'chink', 'spic', 'kike', 'gook', 'wetback'],
'gender': ['fag', 'dyke', 'tranny', 'whore', 'slut', 'bitch'],
'violence': ['kill', 'murder', 'harm', 'hurt', 'abuse', 'torture'],
'general': ['scum', 'vermin', 'subhuman', 'untermensch']
}
self.patterns = [
(r'\b(all|every)\s\w+\s(should|must)\s(die|burn)', 'group violence'),
(r'\b(how to|ways? to)\s(kill|harm|hurt)', 'harm instructions'),
(r'[!@#$%^&*]igg[!@#$%^&*]', 'coded racial slur')
]
def detect(self, text):
text_lower = text.lower()
violations = []
# Keyword detection
for category, keywords in self.keyword_banks.items():
found = [kw for kw in keywords if kw in text_lower]
if found:
violations.append(f"{category} terms: {', '.join(found[:3])}")
# Pattern detection
for pattern, desc in self.patterns:
if re.search(pattern, text_lower):
violations.append(f"pattern: {desc}")
# Model detection
try:
toxic_result = models['toxic-bert'](text)[0]
if toxic_result['label'].lower() in ['toxic', 'hate'] and toxic_result['score'] > 0.7:
violations.append(f"toxic-bert: {toxic_result['label']} ({toxic_result['score']:.2f})")
hate_result = models['roberta-hate'](text)[0]
if hate_result['label'].lower() in ['hate', 'offensive'] and hate_result['score'] > 0.7:
violations.append(f"roberta-hate: {hate_result['label']} ({hate_result['score']:.2f})")
except Exception as e:
print(f"Model error: {e}")
return violations if violations else None
hate_detector = HateSpeechDetector()
# --- RESPONSE GENERATION ---
def generate_response(text, topic, lang):
try:
wikipedia.set_lang('en')
try:
page = wikipedia.page(topic, auto_suggest=False)
context = page.summary[:1000]
except wikipedia.exceptions.DisambiguationError as e:
page = wikipedia.page(e.options[0])
context = page.summary[:1000]
except Exception as e:
print(f"Wikipedia error: {e}")
return "Could not find information. Please try another topic.", None
prompt = f"Context: {context}\nQuestion: {text}\nAnswer:"
answer = models['answer_gen'](prompt, max_length=200)[0]['generated_text']
translated = translate(answer, 'en', lang) if lang != 'en' else answer
audio_path = text_to_speech(translated, lang)
return translated, audio_path
# --- WARNING MESSAGES ---
def create_warning_message(violations):
return gr.HTML(f"""
<div style='
border: 2px solid #ff0000;
border-radius: 5px;
padding: 10px;
background-color: #fff0f0;
margin: 10px 0;
'>
<div style='color: #ff0000; font-weight: bold;'>
⚠️ WARNING: Violation Detected
</div>
<div style='margin-top: 8px;'>
Your message contains prohibited content
</div>
<div style='margin-top: 8px; font-size: 0.9em;'>
<b>Reason:</b> {', '.join(violations[:2])}
</div>
</div>
""")
def create_blocked_message():
return gr.HTML("""
<div style='
border: 2px solid #990000;
border-radius: 5px;
padding: 10px;
background-color: #ffebee;
'>
β›” ACCOUNT TEMPORARILY SUSPENDED
</div>
""")
# --- MAIN HANDLER ---
def handle_interaction(audio, text, topic, lang, chat_history, request: gr.Request):
user_id = request.client.host if request else "default_user"
status = user_manager.get_user_status(user_id)
if status == "banned":
return chat_history.append(("", "β›” Account permanently banned")), "", None
if status == "blocked":
return chat_history.append(("", create_blocked_message())), "", None
if audio:
text = process_audio(audio) or text
if not text.strip():
return chat_history.append(("", "✏️ Please enter a question")), "", None
violations = hate_detector.detect(text)
if violations:
action = user_manager.add_warning(user_id, violations[0])
if action == "warned":
chat_history.append((text, create_warning_message(violations)))
elif action == "blocked":
chat_history.append(("", create_blocked_message()))
return chat_history, "", None
response, audio_output = generate_response(text, topic, lang)
chat_history.append((text, response))
return chat_history, "", audio_output
# --- AUDIO PROCESSING ---
def process_audio(audio_path):
recognizer = sr.Recognizer()
sound = AudioSegment.from_file(audio_path)
chunks = split_on_silence(sound, min_silence_len=500, silence_thresh=sound.dBFS-14)
full_text = ""
for chunk in chunks:
with tempfile.NamedTemporaryFile(suffix='.wav') as f:
chunk.export(f.name, format="wav")
with sr.AudioFile(f.name) as source:
audio = recognizer.record(source)
try: full_text += recognizer.recognize_google(audio) + " "
except: continue
return full_text.strip()
def text_to_speech(text, lang):
try:
tts = gTTS(text=text, lang=lang)
with tempfile.NamedTemporaryFile(suffix='.mp3', delete=False) as f:
tts.save(f.name)
return f.name
except Exception as e:
print(f"TTS Error: {e}")
return None
def translate(text, src, tgt):
if src == tgt: return text
if src != 'en': text = models['translator'](text)[0]['translation_text']
if f'en_to_{tgt}' in models: return models[f'en_to_{tgt}'](text)[0]['translation_text']
return text
# --- INTERACTIVE DESCRIPTION ---
description_html = """
<div style="font-family: 'Arial', sans-serif; max-width: 800px; margin: 0 auto;">
<div style="text-align: center; margin-bottom: 30px;">
<img src="https://i.imgur.com/6wBs5mO.png" style="width: 120px; height: 120px; border-radius: 50%; border: 3px solid #00008b;">
<h1 style="color: #00008b; margin-top: 15px;">🌍 Multilingual AI Assistant</h1>
<p style="color: #555;">Powered by Transformers and Gradio</p>
</div>
<div style="background-color: #e6f2ff; padding: 25px; border-radius: 10px; border: 2px solid #00008b; margin-bottom: 20px;">
<h2 style="color: #00008b; margin-top: 0;">✨ Features</h2>
<div style="display: grid; grid-template-columns: repeat(auto-fit, minmax(200px, 1fr)); gap: 15px;">
<div style="background: white; padding: 15px; border-radius: 8px;">
<h3 style="margin-top: 0;">πŸ” Wikipedia Knowledge</h3>
<p>Answers questions using Wikipedia content</p>
</div>
<div style="background: white; padding: 15px; border-radius: 8px;">
<h3 style="margin-top: 0;">πŸ—£οΈ Voice Interaction</h3>
<p>Speak or type your questions</p>
</div>
<div style="background: white; padding: 15px; border-radius: 8px;">
<h3 style="margin-top: 0;">🌐 5 Languages</h3>
<p>English, French, Spanish, Chinese, Arabic</p>
</div>
<div style="background: white; padding: 15px; border-radius: 8px;">
<h3 style="margin-top: 0;">πŸ›‘οΈ Content Moderation</h3>
<p>Automated hate speech detection</p>
</div>
</div>
</div>
<div style="background-color: #fff0f0; padding: 25px; border-radius: 10px; border: 2px solid #ff0000; margin-bottom: 20px;">
<h2 style="color: #ff0000; margin-top: 0;">🚫 Restricted Content</h2>
<ul>
<li>Hate speech or discrimination</li>
<li>Violent or harmful content</li>
<li>Personal/medical/legal advice</li>
</ul>
</div>
</div>
"""
# --- GRADIO INTERFACE ---
with gr.Blocks(title="🌍 Multilingual AI Assistant") as demo:
gr.HTML(description_html)
with gr.Row():
with gr.Column(scale=1):
audio_input = gr.Audio(sources=["microphone", "upload"], type="filepath", label="🎀 Speak or upload audio")
topic_input = gr.Textbox("Artificial Intelligence", label="πŸ“š Wikipedia Topic")
lang_input = gr.Dropdown(["en", "fr", "es", "zh", "ar"], value="en", label="🌐 Output Language")
with gr.Column(scale=2):
chatbot = gr.Chatbot(label="Conversation")
text_input = gr.Textbox(placeholder="Type your question...", label="✏️ Or type here")
with gr.Row():
clear_btn = gr.Button("πŸ—‘οΈ Clear Chat")
submit_btn = gr.Button("πŸš€ Submit", variant="primary")
audio_output = gr.Audio(label="πŸ”Š Answer", visible=True)
submit_btn.click(
handle_interaction,
inputs=[audio_input, text_input, topic_input, lang_input, chatbot],
outputs=[chatbot, text_input, audio_output]
)
text_input.submit(
handle_interaction,
inputs=[audio_input, text_input, topic_input, lang_input, chatbot],
outputs=[chatbot, text_input, audio_output]
)
clear_btn.click(lambda: ([], "", None), outputs=[chatbot, text_input, audio_output])
if __name__ == "__main__":
demo.launch(share=True)