bilegentile's picture
Upload folder using huggingface_hub
c19ca42 verified
import io
import zlib
import base64
import pickle
import inspect
import requests
import numpy as np
import torch
from typing import Union, List, Dict
from enum import Enum
from PIL import Image, ImageOps, ImageChops, ImageEnhance, ImageFilter, PngImagePlugin
from numpy import ndarray
from torch import Tensor
from modules import sd_samplers, scripts, shared, sd_vae, images, txt2img, img2img
from modules.generation_parameters_copypaste import create_override_settings_dict
from modules.sd_models import CheckpointInfo, get_closet_checkpoint_match
from modules.api.models import (
StableDiffusionTxt2ImgProcessingAPI,
StableDiffusionImg2ImgProcessingAPI,
)
from .helpers import log, get_dict_attribute
img2img_image_args_by_mode: Dict[int, List[List[str]]] = {
0: [["init_img"]],
1: [["sketch"]],
2: [["init_img_with_mask", "image"], ["init_img_with_mask", "mask"]],
3: [["inpaint_color_sketch"], ["inpaint_color_sketch_orig"]],
4: [["init_img_inpaint"], ["init_mask_inpaint"]],
}
def get_script_by_name(script_name: str, is_img2img: bool = False, is_always_on: bool = False) -> scripts.Script:
script_runner = scripts.scripts_img2img if is_img2img else scripts.scripts_txt2img
available_scripts = script_runner.alwayson_scripts if is_always_on else script_runner.selectable_scripts
return next(
(s for s in available_scripts if s.title().lower() == script_name.lower()),
None,
)
def load_image_from_url(url: str):
try:
response = requests.get(url)
buffer = io.BytesIO(response.content)
return Image.open(buffer)
except Exception as e:
log.error(f"[AgentScheduler] Error downloading image from url: {e}")
return None
def encode_image_to_base64(image):
if isinstance(image, np.ndarray):
image = Image.fromarray(image.astype("uint8"))
elif isinstance(image, str):
if image.startswith("http://") or image.startswith("https://"):
image = load_image_from_url(image)
if not isinstance(image, Image.Image):
return image
geninfo, _ = images.read_info_from_image(image)
pnginfo = PngImagePlugin.PngInfo()
if geninfo:
pnginfo.add_text("parameters", geninfo)
with io.BytesIO() as output_bytes:
if geninfo:
image.save(output_bytes, format="PNG", pnginfo=pnginfo)
else:
image.save(output_bytes, format="PNG") # remove pnginfo to save space
bytes_data = output_bytes.getvalue()
return "data:image/png;base64," + base64.b64encode(bytes_data).decode("utf-8")
def serialize_image(image):
if isinstance(image, np.ndarray):
shape = image.shape
dtype = image.dtype
data = base64.b64encode(zlib.compress(image.tobytes())).decode()
return {"shape": shape, "data": data, "cls": "ndarray", "dtype": str(dtype)}
elif isinstance(image, torch.Tensor):
shape = image.shape
dtype = image.dtype
data = base64.b64encode(zlib.compress(image.detach().numpy().tobytes())).decode()
return {
"shape": shape,
"data": data,
"cls": "Tensor",
"device": image.device.type,
"dtype": str(dtype),
}
elif isinstance(image, Image.Image):
size = image.size
mode = image.mode
data = base64.b64encode(zlib.compress(image.tobytes())).decode()
return {
"size": size,
"mode": mode,
"data": data,
"cls": "Image",
}
else:
return image
def deserialize_image(image_str):
if isinstance(image_str, dict) and image_str.get("cls", None):
cls = image_str["cls"]
data = zlib.decompress(base64.b64decode(image_str["data"]))
if cls == "ndarray":
# warn if required fields are missing
if image_str.get("dtype", None) is None:
log.warning(f"Missing dtype for ndarray")
shape = tuple(image_str["shape"])
dtype = np.dtype(image_str.get("dtype", "uint8"))
image = np.frombuffer(data, dtype=dtype)
return image.reshape(shape)
elif cls == "Tensor":
if image_str.get("device", None) is None:
log.warning(f"Missing device for Tensor")
shape = tuple(image_str["shape"])
dtype = np.dtype(image_str.get("dtype", "uint8"))
image_np = np.frombuffer(data, dtype=dtype)
return torch.from_numpy(image_np.reshape(shape)).to(device=image_str.get("device", "cpu"))
else:
size = tuple(image_str["size"])
mode = image_str["mode"]
return Image.frombytes(mode, size, data)
else:
return image_str
def serialize_img2img_image_args(args: Dict):
for mode, image_args in img2img_image_args_by_mode.items():
for keys in image_args:
if mode != args["mode"]:
# set None to unused image args to save space
args[keys[0]] = None
elif len(keys) == 1:
image = args.get(keys[0], None)
args[keys[0]] = serialize_image(image)
else:
value = args.get(keys[0], {})
image = value.get(keys[1], None)
value[keys[1]] = serialize_image(image)
args[keys[0]] = value
def deserialize_img2img_image_args(args: Dict):
for mode, image_args in img2img_image_args_by_mode.items():
if mode != args["mode"]:
continue
for keys in image_args:
if len(keys) == 1:
image = args.get(keys[0], None)
args[keys[0]] = deserialize_image(image)
else:
value = args.get(keys[0], {})
image = value.get(keys[1], None)
value[keys[1]] = deserialize_image(image)
args[keys[0]] = value
def serialize_controlnet_args(cnet_unit):
args: Dict = cnet_unit.__dict__
serialized_args = {"is_cnet": True}
for k, v in args.items():
if isinstance(v, Enum):
serialized_args[k] = v.value
else:
serialized_args[k] = v
return serialized_args
def deserialize_controlnet_args(args: Dict):
new_args = args.copy()
new_args.pop("is_cnet", None)
new_args.pop("is_ui", None)
return new_args
def serialize_script_args(script_args: List):
# convert UiControlNetUnit to dict to make it serializable
for i, a in enumerate(script_args):
if type(a).__name__ == "UiControlNetUnit":
script_args[i] = serialize_controlnet_args(a)
return zlib.compress(pickle.dumps(script_args))
def deserialize_script_args(script_args: Union[bytes, List], UiControlNetUnit = None):
if type(script_args) is bytes:
script_args = pickle.loads(zlib.decompress(script_args))
for i, a in enumerate(script_args):
if isinstance(a, dict) and a.get("is_cnet", False):
unit = deserialize_controlnet_args(a)
skip_controlnet = False
if UiControlNetUnit is not None:
u = UiControlNetUnit()
for k, v in unit.items():
if isinstance(getattr(u, k, None), Enum):
# check if v is a valid enum value
enum_obj: Enum= getattr(u, k)
if v not in [e.value for e in enum_obj.__class__]:
log.error(f"Invalid enum value {v} for {k} encountered, valid value is {enum_obj.__class__}")
skip_controlnet = True
break
unit[k] = type(getattr(u, k))(v)
if not skip_controlnet: # valid
unit = UiControlNetUnit(**unit)
if not skip_controlnet: # valid
script_args[i] = unit
return script_args
def map_controlnet_args_to_api_task_args(args: Dict):
if type(args).__name__ == "UiControlNetUnit":
args = args.__dict__
for k, v in args.items():
if k == "image" and v is not None:
args[k] = {
"image": encode_image_to_base64(v["image"]),
"mask": encode_image_to_base64(v["mask"]) if v.get("mask", None) is not None else None,
}
if isinstance(v, Enum):
args[k] = v.value
return args
def map_ui_task_args_list_to_named_args(args: List, is_img2img: bool):
fn = (
getattr(img2img, "img2img_create_processing", img2img.img2img)
if is_img2img
else getattr(txt2img, "txt2img_create_processing", txt2img.txt2img)
)
arg_names = inspect.getfullargspec(fn).args
# SD WebUI 1.5.0 has new request arg
if "request" in arg_names:
args.insert(arg_names.index("request"), None)
named_args = dict(zip(arg_names, args[0 : len(arg_names)]))
script_args = args[len(arg_names) :]
override_settings_texts: List[str] = named_args.get("override_settings_texts", [])
# add clip_skip if not exist in args (vlad fork has this arg)
if named_args.get("clip_skip", None) is None:
clip_skip = next((s for s in override_settings_texts if s.startswith("Clip skip:")), None)
if clip_skip is None and hasattr(shared.opts, "CLIP_stop_at_last_layers"):
override_settings_texts.append(f"Clip skip: {shared.opts.CLIP_stop_at_last_layers}")
named_args["override_settings_texts"] = override_settings_texts
sampler_index = named_args.get("sampler_index", None)
if sampler_index is not None:
available_samplers = sd_samplers.samplers_for_img2img if is_img2img else sd_samplers.samplers
sampler_name = available_samplers[named_args["sampler_index"]].name
named_args["sampler_name"] = sampler_name
log.debug(f"serialize sampler index: {str(sampler_index)} as {sampler_name}")
return (
named_args,
script_args,
)
def map_named_args_to_ui_task_args_list(named_args: Dict, script_args: List, is_img2img: bool):
fn = (
getattr(img2img, "img2img_create_processing", img2img.img2img)
if is_img2img
else getattr(txt2img, "txt2img_create_processing", txt2img.txt2img)
)
arg_names = inspect.getfullargspec(fn).args
sampler_name = named_args.get("sampler_name", None)
if sampler_name is not None:
available_samplers = sd_samplers.samplers_for_img2img if is_img2img else sd_samplers.samplers
sampler_index = next((i for i, x in enumerate(available_samplers) if x.name == sampler_name), 0)
named_args["sampler_index"] = sampler_index
args = [named_args.get(name, None) for name in arg_names]
args.extend(script_args)
return args
def map_script_args_list_to_named(script: scripts.Script, args: List):
script_name = script.title().lower()
if script_name == "controlnet":
for i, cnet_args in enumerate(args):
args[i] = map_controlnet_args_to_api_task_args(cnet_args)
return args
fn = script.process if script.alwayson else script.run
inspection = inspect.getfullargspec(fn)
arg_names = inspection.args[2:]
named_script_args = dict(zip(arg_names, args[: len(arg_names)]))
if inspection.varargs is not None:
named_script_args[inspection.varargs] = args[len(arg_names) :]
return named_script_args
def map_named_script_args_to_list(script: scripts.Script, named_args: Union[dict, list]):
script_name = script.title().lower()
if isinstance(named_args, dict):
fn = script.process if script.alwayson else script.run
inspection = inspect.getfullargspec(fn)
arg_names = inspection.args[2:]
args = [named_args.get(name, None) for name in arg_names]
if inspection.varargs is not None:
args.extend(named_args.get(inspection.varargs, []))
return args
if isinstance(named_args, list):
if script_name == "controlnet":
for i, cnet_args in enumerate(named_args):
named_args[i] = map_controlnet_args_to_api_task_args(cnet_args)
return named_args
def map_ui_task_args_to_api_task_args(named_args: Dict, script_args: List, is_img2img: bool):
api_task_args: Dict = named_args.copy()
prompt_styles = api_task_args.pop("prompt_styles", [])
api_task_args["styles"] = prompt_styles
sampler_index = api_task_args.pop("sampler_index", 0)
api_task_args["sampler_name"] = sd_samplers.samplers[sampler_index].name
override_settings_texts = api_task_args.pop("override_settings_texts", [])
api_task_args["override_settings"] = create_override_settings_dict(override_settings_texts)
if is_img2img:
mode = api_task_args.pop("mode", 0)
for arg_mode, image_args in img2img_image_args_by_mode.items():
if mode != arg_mode:
for keys in image_args:
api_task_args.pop(keys[0], None)
# the logic below is copied from modules/img2img.py
if mode == 0:
image = api_task_args.pop("init_img")
image = image.convert("RGB") if image else None
mask = None
elif mode == 1:
image = api_task_args.pop("sketch")
image = image.convert("RGB") if image else None
mask = None
elif mode == 2:
init_img_with_mask: Dict = api_task_args.pop("init_img_with_mask") or {}
image = init_img_with_mask.get("image", None)
image = image.convert("RGB") if image else None
mask = init_img_with_mask.get("mask", None)
if mask:
alpha_mask = (
ImageOps.invert(image.split()[-1]).convert("L").point(lambda x: 255 if x > 0 else 0, mode="1")
)
mask = ImageChops.lighter(alpha_mask, mask.convert("L")).convert("L")
elif mode == 3:
image = api_task_args.pop("inpaint_color_sketch")
orig = api_task_args.pop("inpaint_color_sketch_orig") or image
if image is not None:
mask_alpha = api_task_args.pop("mask_alpha", 0)
mask_blur = api_task_args.get("mask_blur", 4)
pred = np.any(np.array(image) != np.array(orig), axis=-1)
mask = Image.fromarray(pred.astype(np.uint8) * 255, "L")
mask = ImageEnhance.Brightness(mask).enhance(1 - mask_alpha / 100)
blur = ImageFilter.GaussianBlur(mask_blur)
image = Image.composite(image.filter(blur), orig, mask.filter(blur))
image = image.convert("RGB")
elif mode == 4:
image = api_task_args.pop("init_img_inpaint")
mask = api_task_args.pop("init_mask_inpaint")
else:
raise Exception(f"Batch mode is not supported yet")
image = ImageOps.exif_transpose(image) if image else None
api_task_args["init_images"] = [encode_image_to_base64(image)] if image else []
api_task_args["mask"] = encode_image_to_base64(mask) if mask else None
selected_scale_tab = api_task_args.pop("selected_scale_tab", 0)
scale_by = api_task_args.get("scale_by", 1)
if selected_scale_tab == 1 and image:
api_task_args["width"] = int(image.width * scale_by)
api_task_args["height"] = int(image.height * scale_by)
else:
hr_sampler_index = api_task_args.pop("hr_sampler_index", 0)
api_task_args["hr_sampler_name"] = (
sd_samplers.samplers_for_img2img[hr_sampler_index - 1].name if hr_sampler_index != 0 else None
)
# script
script_runner = scripts.scripts_img2img if is_img2img else scripts.scripts_txt2img
script_id = script_args[0]
if script_id == 0:
api_task_args["script_name"] = None
api_task_args["script_args"] = []
else:
script: scripts.Script = script_runner.selectable_scripts[script_id - 1]
api_task_args["script_name"] = script.title().lower()
current_script_args = script_args[script.args_from : script.args_to]
api_task_args["script_args"] = map_script_args_list_to_named(script, current_script_args)
# alwayson scripts
alwayson_scripts = api_task_args.get("alwayson_scripts", None)
if not alwayson_scripts:
api_task_args["alwayson_scripts"] = {}
alwayson_scripts = api_task_args["alwayson_scripts"]
for script in script_runner.alwayson_scripts:
alwayson_script_args = script_args[script.args_from : script.args_to]
script_name = script.title().lower()
if script_name != "agent scheduler":
named_script_args = map_script_args_list_to_named(script, alwayson_script_args)
alwayson_scripts[script_name] = {"args": named_script_args}
return api_task_args
def serialize_api_task_args(
params: Dict,
is_img2img: bool,
checkpoint: str = None,
vae: str = None,
) -> Dict:
# handle named script args
script_name = params.get("script_name", None)
if script_name is not None and script_name != "":
script = get_script_by_name(script_name, is_img2img)
if script is None:
raise Exception(f"Not found script {script_name}")
script_args = params.get("script_args", {})
params["script_args"] = map_named_script_args_to_list(script, script_args)
# handle named alwayson script args
alwayson_scripts = get_dict_attribute(params, "alwayson_scripts", {})
assert type(alwayson_scripts) is dict
script_runner = scripts.scripts_img2img if is_img2img else scripts.scripts_txt2img
allowed_alwayson_scripts = {s.title().lower(): s for s in script_runner.alwayson_scripts}
valid_alwayson_scripts = {}
for script_name, script_args in alwayson_scripts.items():
if script_name.lower() == "agent scheduler":
continue
if script_name.lower() not in allowed_alwayson_scripts:
log.warning(f"Script {script_name} is not in script_runner.alwayson_scripts")
continue
script = allowed_alwayson_scripts[script_name.lower()]
script_args = get_dict_attribute(script_args, "args", [])
arg_list = map_named_script_args_to_list(script, script_args)
valid_alwayson_scripts[script_name] = {"args": arg_list}
params["alwayson_scripts"] = valid_alwayson_scripts
args = (
StableDiffusionImg2ImgProcessingAPI(**params) if is_img2img else StableDiffusionTxt2ImgProcessingAPI(**params)
)
if args.override_settings is None:
args.override_settings = {}
if checkpoint is not None:
checkpoint_info: CheckpointInfo = get_closet_checkpoint_match(checkpoint)
if not checkpoint_info:
log.warning(f"Checkpoint {checkpoint} not found, use current system model")
else:
args.override_settings["sd_model_checkpoint"] = checkpoint_info.title
if vae is not None:
if vae not in sd_vae.vae_dict:
log.warning(f"VAE {vae} not found, use current system vae")
else:
args.override_settings["sd_vae"] = vae
# load images from url or file if needed
if is_img2img:
init_images = args.init_images
if len(init_images) == 0:
raise Exception("At least one init image is required")
for i, image in enumerate(init_images):
init_images[i] = encode_image_to_base64(image)
args.mask = encode_image_to_base64(args.mask)
if len(init_images) > 1:
args.batch_size = len(init_images)
return args.dict()