File size: 14,462 Bytes
7f45a59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
import streamlit as st
import pandas as pd
import sweetviz as sv
from pycaret.classification import setup as cls_setup, compare_models as cls_compare, save_model as cls_save, pull as cls_pull, plot_model as cls_plot
from pycaret.regression import setup as reg_setup, compare_models as reg_compare, save_model as reg_save, pull as reg_pull, plot_model as reg_plot
from pycaret.clustering import setup as clu_setup, create_model as clu_create, plot_model as clu_plot, save_model as clu_save, pull as clu_pull
from pycaret.anomaly import setup as ano_setup, create_model as ano_create, plot_model as ano_plot, save_model as ano_save, pull as ano_pull
from pycaret.time_series import setup as ts_setup, compare_models as ts_compare, save_model as ts_save, pull as ts_pull, plot_model as ts_plot
from pycaret.datasets import get_data
import streamlit.components.v1 as components
import traceback
from ydata_profiling import ProfileReport
import os



def get_all_datasets():
    df = get_data('index')
    return df['Dataset'].to_list()

def show_profile_reports(container):
    if os.path.exists("profile_report.html"):
        with open('profile_report.html', 'r') as f:
            html_content = f.read()
        with container:
            components.html(html_content, height=800, scrolling=True)
    if os.path.exists("sweetviz_report.html"):
        with open('sweetviz_report.html', 'r') as f:
            html_content = f.read()
        with container:
            components.html(html_content, height=800, scrolling=True)

def data_profile(df,container):
    profile = ProfileReport(df)
    profile.to_file("profile_report.html")
    with open('profile_report.html', 'r') as f:
        html_content = f.read()
    with container:
        components.html(html_content, height=800, scrolling=True)
    
def update_progress(progress_bar, step, max_steps):
    progress = int((step / max_steps) * 100)
    t = f"Processing....Step {step}/{max_steps}"
    if step == max_steps:
        t="Process Completed"
    progress_bar.progress(progress, text=t)

def display_sweetviz_report(dataframe,container):
    report = sv.analyze(dataframe)
    report.show_html('sweetviz_report.html', open_browser=False)
    with open('sweetviz_report.html', 'r') as f:
        html_content = f.read()
    with container:
        components.html(html_content, height=800, scrolling=True)

def handle_exception(e):
    st.error(
        f"""The app has encountered an error:  
            **{e}**  
            Please check settings - columns selections and model parameters  
            Or
            Create an issue [here](https://github.com/bitbotcoder/mlwiz/issues/new) with the below error details
        """,
        icon="🥺",
    )
    with st.expander("See Error details"):
        st.error(traceback.format_exc())

def load_data(uploaded_file):
    try:
        if uploaded_file.name.endswith('.csv'):
            df = pd.read_csv(uploaded_file)
        elif uploaded_file.name.endswith('.xlsx'):
            df = pd.read_excel(uploaded_file)
        st.write("## Dataset")
        st.write(df.head())
        st.session_state['dataframe'] = df
    except Exception as e:
        handle_exception(e)

def load_pycaret_dataset(dataset_name):
    try:
        df = get_data(dataset_name)
        st.write("## Dataset")
        st.write(df.head())
        st.session_state['dataframe'] = df
    except Exception as e:
        handle_exception(e)


def eda_report():
    if 'dataframe' in st.session_state:
        df = st.session_state['dataframe']
        col1,col2 = st.columns([0.6,0.4])
        new_report = col1.toggle(":blue[Generate New]", value=True)
        show_button = col2.button("Show Report")
        pb = st.progress(0, text="Generating Report")
        cont = st.container(border=False)
        try:
            if show_button:
                if new_report:
                    update_progress(pb,1,4)
                    data_profile(df, cont)
                    update_progress(pb,2,4)
                    display_sweetviz_report(df, cont)
                    update_progress(pb,4,4)
                else:
                    show_profile_reports(cont)

        except Exception as e:
            handle_exception(e)


def build_model(task, container):
    
    if 'dataframe' in st.session_state:
        df = st.session_state['dataframe']
        feature_expander = container.expander("Select Columns")
        target_column = feature_expander.selectbox("Select target column", df.columns) if task in ["Classification", "Regression", "Time Series Forecasting"] else None
        numerical_columns = feature_expander.multiselect("Select numerical columns", df.columns)
        categorical_columns = feature_expander.multiselect("Select categorical columns", df.columns)

        params_expander = container.expander("Tune Parameters")
        # Data Preparation
        handle_missing_data = params_expander.toggle("Handle Missing Data", value=True)
        handle_outliers = params_expander.toggle("Handle Outliers", value=True)
        
        # Scale and Transform
        normalize = params_expander.checkbox("Normalize", value=False)
        normalize_method = params_expander.selectbox("Normalize Method", ["zscore", "minmax", "maxabs", "robust"], index=0 if normalize else -1) if normalize else None
        transformation = params_expander.checkbox("Apply Transformation", value=False)
        transformation_method = params_expander.selectbox("Transformation Method", ["yeo-johnson", "quantile"], index=0 if transformation else -1) if transformation else None
        
        # Feature Engineering
        polynomial_features = params_expander.checkbox("Polynomial Features", value=False)
        polynomial_degree = params_expander.slider("Polynomial Degree", 2, 5, 2) if polynomial_features else None
        
        # Feature Selection
        remove_multicollinearity = params_expander.checkbox("Remove Multicollinearity", value=False)
        multicollinearity_threshold = params_expander.slider("Multicollinearity Threshold", 0.5, 1.0, 0.9) if remove_multicollinearity else None
        
        if not (task == "Anomaly Detection" or task == "Clustering") :
            feature_selection = params_expander.checkbox("Feature Selection", value=False)
            feature_selection_method = params_expander.selectbox("Feature Selection Method", ["classic", "exhaustive"], index=0 if feature_selection else -1) if feature_selection else None
        else:
            feature_selection = None
            feature_selection_method = None
                
        try:
            # Setup arguments for PyCaret
            setup_kwargs = {
                'data': df[numerical_columns + categorical_columns + ([target_column] if target_column else [])],
                'categorical_features': categorical_columns,
                'numeric_features': numerical_columns,
                'target': target_column,
                'preprocess': handle_missing_data,
                'remove_outliers': handle_outliers,
                'normalize': normalize,
                'normalize_method': normalize_method,
                'transformation': transformation,
                'transformation_method': transformation_method,
                'polynomial_features': polynomial_features,
                'polynomial_degree': polynomial_degree,
                'remove_multicollinearity': remove_multicollinearity,
                'multicollinearity_threshold': multicollinearity_threshold,
                'feature_selection': feature_selection,
                'feature_selection_method': feature_selection_method
            }
            pb = st.progress(0, text="Building Model...")

            if task == "Classification" and st.button("Run Classification"):
                
                df[target_column] = df[target_column].astype('category')
                
                df.dropna(subset=[target_column] + numerical_columns + categorical_columns, inplace=True)
                
                if len(df) < 2:
                    st.error("Not enough data to split into train and test sets.")
                    return
                update_progress(pb,1,7)
                exp = cls_setup(**setup_kwargs)
                update_progress(pb,2,7)
                best_model = cls_compare()
                update_progress(pb,3,7)
                st.dataframe(cls_pull())
                update_progress(pb,4,7)
                cls_plot(best_model, plot='auc',display_format="streamlit")
                cls_plot(best_model, plot='confusion_matrix',display_format="streamlit")
                update_progress(pb,5,7)
                st.image(cls_plot(best_model, plot='pr',save=True))
                update_progress(pb,6,7)
                cls_save(best_model, 'best_classification_model')
                st.write('Best Model based on metrics - ')
                st.write(best_model)
                update_progress(pb,7,7)

            elif task == "Regression" and st.button("Run Regression"):
                update_progress(pb,1,7)
                df[target_column] = pd.to_numeric(df[target_column], errors='coerce')
                update_progress(pb,2,7)
                df.dropna(subset=[target_column] + numerical_columns + categorical_columns, inplace=True)
                update_progress(pb,3,7)                
                if len(df) < 2:
                    st.error("Not enough data to split into train and test sets.")
                    return
                
                exp = reg_setup(**setup_kwargs)
                best_model = reg_compare()
                update_progress(pb,4,7)
                st.dataframe(reg_pull())
                update_progress(pb,5,7)
                st.image(reg_plot(best_model, plot='residuals', save=True))
                st.image(reg_plot(best_model, plot='error', save=True))
                st.image(reg_plot(best_model, plot='error', save=True))
                update_progress(pb,6,7)
                reg_save(best_model, 'best_regression_model')
                st.write('Best Model based on metrics - ')
                st.write(best_model)
                update_progress(pb,7,7)
            elif task == "Clustering" and st.button("Run Clustering"):
                update_progress(pb,1,7)
                df.dropna(subset=numerical_columns + categorical_columns, inplace=True)
                update_progress(pb,2,7)
                setup_kwargs.pop('target')
                setup_kwargs.pop('feature_selection')
                setup_kwargs.pop('feature_selection_method')  
                update_progress(pb,3,7)
                exp = clu_setup(**setup_kwargs)
                best_model = clu_create('kmeans')
                update_progress(pb,4,7)
                clu_plot(best_model, plot='cluster', display_format='streamlit')
                clu_plot(best_model, plot='elbow', display_format='streamlit')
                update_progress(pb,5,7)
                st.write(best_model)
                st.dataframe(clu_pull())
                update_progress(pb,6,7)
                clu_save(best_model, 'best_clustering_model')
                st.write('Best Model based on metrics - ')
                st.write(best_model)
                update_progress(pb,7,7)

            elif task == "Anomaly Detection" and st.button("Run Anomaly Detection"):
                update_progress(pb,1,7)
                df.dropna(subset=numerical_columns + categorical_columns, inplace=True)
                update_progress(pb,2,7)
                setup_kwargs.pop('target')
                setup_kwargs.pop('feature_selection')
                setup_kwargs.pop('feature_selection_method')        
                update_progress(pb,3,7)
                exp = ano_setup(**setup_kwargs)
                best_model = ano_create('iforest')
                update_progress(pb,4,7)
                ano_plot(best_model, plot='tsne', display_format='streamlit')
                update_progress(pb,5,7)                
                st.write(best_model)
                st.dataframe(ano_pull())
                update_progress(pb,6,7)
                ano_save(best_model, 'best_anomaly_model')
                st.write('Best Model based on metrics - ')
                st.write(best_model)
                update_progress(pb,7,7)
            elif task == "Time Series Forecasting" :
                date_column = feature_expander.selectbox("Select date column", df.columns)
                if st.button("Run Time Series Forecasting"):
                    update_progress(pb,1,5)
                    df[date_column] = pd.to_datetime(df[date_column])
                    df[target_column] = pd.to_numeric(df[target_column], errors='coerce')
                    df.dropna(subset=[target_column], inplace=True)
                    update_progress(pb,2,5)                
                    df = df.set_index(date_column).asfreq('D')
                    exp = ts_setup(df, target=target_column, numeric_imputation_target='mean', numeric_imputation_exogenous='mean')
                    best_model = ts_compare()
                    update_progress(pb,3,5)                    
                    st.dataframe(ts_pull())
                    ts_plot(best_model, plot='forecast', display_format="streamlit")
                    ts_save(best_model, 'best_timeseries_model')
                    update_progress(pb,4,5)
                    st.write('Best Model based on metrics - ')
                    st.write(best_model)
                    update_progress(pb,5,5)
        except Exception as e:
            handle_exception(e)

def download_model(task):
    model_file = None
    if task == "Classification":
        model_file = 'best_classification_model.pkl'
    elif task == "Regression":
        model_file = 'best_regression_model.pkl'
    elif task == "Clustering":
        model_file = 'best_clustering_model.pkl'
    elif task == "Anomaly Detection":
        model_file = 'best_anomaly_model.pkl'
    elif task == "Time Series Forecasting":
        model_file = 'best_timeseries_model.pkl'
    
    if model_file:
        if os.path.exists(model_file):
            try:
                with open(model_file, 'rb') as f:
                    st.download_button('Download Model', f, file_name=model_file)
            except Exception as e:
                handle_exception(e)
        else:
            st.error("❗No File Found | First Build A ML Model ")