Spaces:
Paused
Paused
try: | |
import streamlit as st | |
from ml_pipeline import load_data, eda_report, build_model, download_model,load_pycaret_dataset, get_all_datasets, handle_exception | |
from st_social_media_links import SocialMediaIcons | |
import streamlit.components.v1 as components | |
import traceback | |
VERSION = "0.5.4" | |
# Title and description | |
st.set_page_config( | |
page_title="MLWiz - AutoML WorkBench", | |
page_icon="🤖", | |
menu_items={ | |
"About": f"MLWize v{VERSION}" | |
f"\nApp contact: [Sumit Khanna](https://github.com/bitbotcoder/)", | |
"Report a Bug": "https://github.com/bitbotcoder/mlwiz/issues/new", | |
"Get help": None, | |
}, | |
layout="wide", | |
) | |
st.subheader("🤖 MLWiz - Automating ML Tasks") | |
st.divider() | |
with st.sidebar: | |
st.image('logo.png', width=150) | |
st.write("🔠 Supported Features") | |
st.caption(""" | |
- ✅ Datasets (Custom, PyCaret(disabled)) | |
- ✅ Data Profiling & EDA | |
- ✅ Build ML Models | |
- ✅ Regression | |
- ✅ Classification | |
- ✅ Clustering | |
- ✅ Time Series Forecasting | |
- ✅ Anamoly Detection | |
- ✅ Download Models | |
""") | |
st.divider() | |
st.write("📢 Share with wider community") | |
social_media_links = [ | |
"https://x.com/intent/tweet?hashtags=streamlit%2Cpython&text=Check%20out%20this%20awesome%20Streamlit%20app%20I%20built%0A&url=https%3A%2F%2Fautoml-wiz.streamlit.app", | |
"https://www.linkedin.com/sharing/share-offsite/?summary=https%3A%2F%2Fautoml-wiz.streamlit.app%20%23streamlit%20%23python&title=Check%20out%20this%20awesome%20Streamlit%20app%20I%20built%0A&url=https%3A%2F%2Fautoml-wiz.streamlit.app", | |
"https://www.facebook.com/sharer/sharer.php?kid_directed_site=0&u=https%3A%2F%2Fautoml-wiz.streamlit.app", | |
"https://github.com/bitbotcoder/mlwiz" | |
] | |
social_media_icons = SocialMediaIcons(social_media_links, colors=["white"] * len(social_media_links)) | |
social_media_icons.render(sidebar=True) | |
#Tasks based on user selection | |
tab1, tab2, tab3, tab4, = st.tabs(["📑Choose Dataset", "📊Perform EDA", "🧠Build Model", "📩Download Model"]) | |
with tab1: | |
c1, c2 = st.columns([1,2]) | |
c1.write("Upload Custom Dataset files") | |
#dataset_source = c1.radio("Select Dataset Source", options=["PyCaret", "Upload"], captions=["Load PyCaret Datasets", "Upload Custom Dataset files"]) | |
#if dataset_source == "PyCaret": | |
# pycaret_datasets = get_all_datasets() | |
# selected_dataset = c2.selectbox("Select a dataset", pycaret_datasets) | |
# if c2.button("Load Dataset"): | |
# load_pycaret_dataset(selected_dataset) | |
#elif dataset_source == "Upload": | |
uploaded_file = c2.file_uploader("Choose a file", type=["csv", "xlsx"]) | |
if uploaded_file is not None: | |
load_data(uploaded_file) | |
with tab2: | |
eda_report() | |
with tab3: | |
st.write("**Configure ML Model**") | |
col1,col2 = st.columns([0.4,0.7]) | |
task = col1.selectbox("Select ML task", ["Classification", "Regression", "Clustering", "Anomaly Detection", "Time Series Forecasting"]) | |
build_model(task,col2) | |
with tab4: | |
download_model(task) | |
except Exception as e: | |
handle_exception(e) | |
st.success( | |
"Show your 💘 ➡️ [Star the repo](https://github.com/bitbotcoder/mlwiz/)", | |
icon="ℹ️", | |
) |