blackwingedkite's picture
Upload 96 files
b87a3ce
# Inspired by: https://github.com/huggingface/transformers/blob/v4.29.2/examples/pytorch/language-modeling/run_clm.py
import math
from typing import TYPE_CHECKING, Optional, List
from transformers import DataCollatorForLanguageModeling, Trainer
from llmtuner.dsets import get_dataset, preprocess_dataset, split_dataset
from llmtuner.extras.ploting import plot_loss
from llmtuner.tuner.core import load_model_and_tokenizer
if TYPE_CHECKING:
from transformers import Seq2SeqTrainingArguments, TrainerCallback
from llmtuner.hparams import ModelArguments, DataArguments, FinetuningArguments
def run_pt(
model_args: "ModelArguments",
data_args: "DataArguments",
training_args: "Seq2SeqTrainingArguments",
finetuning_args: "FinetuningArguments",
callbacks: Optional[List["TrainerCallback"]] = None
):
dataset = get_dataset(model_args, data_args)
model, tokenizer = load_model_and_tokenizer(model_args, finetuning_args, training_args.do_train, stage="pt")
dataset = preprocess_dataset(dataset, tokenizer, data_args, training_args, stage="pt")
data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
# Initialize our Trainer
trainer = Trainer(
model=model,
args=training_args,
tokenizer=tokenizer,
data_collator=data_collator,
callbacks=callbacks,
**split_dataset(dataset, data_args, training_args)
)
# Training
if training_args.do_train:
train_result = trainer.train(resume_from_checkpoint=training_args.resume_from_checkpoint)
trainer.log_metrics("train", train_result.metrics)
trainer.save_metrics("train", train_result.metrics)
trainer.save_state()
trainer.save_model()
if trainer.is_world_process_zero() and model_args.plot_loss:
plot_loss(training_args.output_dir, keys=["loss", "eval_loss"])
# Evaluation
if training_args.do_eval:
metrics = trainer.evaluate(metric_key_prefix="eval")
try:
perplexity = math.exp(metrics["eval_loss"])
except OverflowError:
perplexity = float("inf")
metrics["perplexity"] = perplexity
trainer.log_metrics("eval", metrics)
trainer.save_metrics("eval", metrics)