File size: 32,983 Bytes
bb9c2bf
 
 
 
47a6902
bb9c2bf
 
 
 
 
 
 
 
 
47a6902
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb9c2bf
 
 
 
 
 
47a6902
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb9c2bf
 
 
 
 
 
 
47a6902
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb9c2bf
 
 
 
 
 
47a6902
bb9c2bf
 
 
 
 
 
 
 
 
 
 
 
 
022d1be
bb9c2bf
022d1be
bb9c2bf
 
022d1be
bb9c2bf
 
 
 
 
 
022d1be
 
bb9c2bf
 
 
 
 
 
022d1be
bb9c2bf
47a6902
 
bb9c2bf
 
 
 
47a6902
bb9c2bf
 
 
 
 
 
 
 
 
 
47a6902
bb9c2bf
 
 
 
 
 
 
47a6902
 
 
 
bb9c2bf
 
 
 
 
 
 
 
022d1be
 
bb9c2bf
 
 
022d1be
bb9c2bf
 
 
 
 
 
47a6902
 
022d1be
 
 
 
 
 
47a6902
022d1be
 
 
bb9c2bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47a6902
 
022d1be
 
 
47a6902
 
022d1be
47a6902
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
022d1be
 
 
 
47a6902
022d1be
 
 
 
47a6902
022d1be
 
47a6902
022d1be
 
 
 
47a6902
bb9c2bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47a6902
bb9c2bf
 
 
 
 
 
 
 
 
47a6902
 
 
 
 
bb9c2bf
 
 
 
 
 
 
 
 
 
47a6902
 
bb9c2bf
47a6902
 
bb9c2bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47a6902
bb9c2bf
 
47a6902
bb9c2bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47a6902
bb9c2bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "405bc169-e0b7-48e6-84b8-4e4a791cf61a",
   "metadata": {
    "scrolled": true
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "INFO 06-09 04:41:03 [__init__.py:243] Automatically detected platform cuda.\n",
      "INFO 06-09 04:41:06 [__init__.py:31] Available plugins for group vllm.general_plugins:\n",
      "INFO 06-09 04:41:06 [__init__.py:33] - lora_filesystem_resolver -> vllm.plugins.lora_resolvers.filesystem_resolver:register_filesystem_resolver\n",
      "INFO 06-09 04:41:06 [__init__.py:36] All plugins in this group will be loaded. Set `VLLM_PLUGINS` to control which plugins to load.\n",
      "INFO 06-09 04:41:07 [api_server.py:1289] vLLM API server version 0.9.0.1\n",
      "INFO 06-09 04:41:08 [cli_args.py:300] non-default args: {'host': '0.0.0.0', 'task': 'embed', 'trust_remote_code': True, 'enforce_eager': True, 'served_model_name': ['local'], 'tensor_parallel_size': 2, 'gpu_memory_utilization': 0.4}\n",
      "WARNING 06-09 04:41:08 [config.py:3096] Your Quadro RTX 8000 device (with compute capability 7.5) doesn't support torch.bfloat16. Falling back to torch.float16 for compatibility.\n",
      "WARNING 06-09 04:41:08 [config.py:3135] Casting torch.bfloat16 to torch.float16.\n",
      "INFO 06-09 04:41:17 [config.py:473] Found sentence-transformers modules configuration.\n",
      "INFO 06-09 04:41:17 [config.py:493] Found pooling configuration.\n",
      "WARNING 06-09 04:41:17 [arg_utils.py:1583] Compute Capability < 8.0 is not supported by the V1 Engine. Falling back to V0. \n",
      "WARNING 06-09 04:41:17 [arg_utils.py:1431] The model has a long context length (40960). This may causeOOM during the initial memory profiling phase, or result in low performance due to small KV cache size. Consider setting --max-model-len to a smaller value.\n",
      "INFO 06-09 04:41:17 [config.py:1875] Defaulting to use mp for distributed inference\n",
      "WARNING 06-09 04:41:17 [cuda.py:87] To see benefits of async output processing, enable CUDA graph. Since, enforce-eager is enabled, async output processor cannot be used\n",
      "INFO 06-09 04:41:17 [api_server.py:257] Started engine process with PID 84927\n",
      "INFO 06-09 04:41:21 [__init__.py:243] Automatically detected platform cuda.\n",
      "INFO 06-09 04:41:24 [__init__.py:31] Available plugins for group vllm.general_plugins:\n",
      "INFO 06-09 04:41:24 [__init__.py:33] - lora_filesystem_resolver -> vllm.plugins.lora_resolvers.filesystem_resolver:register_filesystem_resolver\n",
      "INFO 06-09 04:41:24 [__init__.py:36] All plugins in this group will be loaded. Set `VLLM_PLUGINS` to control which plugins to load.\n",
      "INFO 06-09 04:41:24 [llm_engine.py:230] Initializing a V0 LLM engine (v0.9.0.1) with config: model='Qwen/Qwen3-Embedding-4B', speculative_config=None, tokenizer='Qwen/Qwen3-Embedding-4B', skip_tokenizer_init=False, tokenizer_mode=auto, revision=None, override_neuron_config={}, tokenizer_revision=None, trust_remote_code=True, dtype=torch.float16, max_seq_len=40960, download_dir=None, load_format=LoadFormat.AUTO, tensor_parallel_size=2, pipeline_parallel_size=1, disable_custom_all_reduce=False, quantization=None, enforce_eager=True, kv_cache_dtype=auto,  device_config=cuda, decoding_config=DecodingConfig(backend='auto', disable_fallback=False, disable_any_whitespace=False, disable_additional_properties=False, reasoning_backend=''), observability_config=ObservabilityConfig(show_hidden_metrics_for_version=None, otlp_traces_endpoint=None, collect_detailed_traces=None), seed=0, served_model_name=local, num_scheduler_steps=1, multi_step_stream_outputs=True, enable_prefix_caching=None, chunked_prefill_enabled=False, use_async_output_proc=False, pooler_config=PoolerConfig(pooling_type='LAST', normalize=True, softmax=None, step_tag_id=None, returned_token_ids=None), compilation_config={\"compile_sizes\": [], \"inductor_compile_config\": {\"enable_auto_functionalized_v2\": false}, \"cudagraph_capture_sizes\": [], \"max_capture_size\": 0}, use_cached_outputs=True, \n",
      "WARNING 06-09 04:41:25 [multiproc_worker_utils.py:306] Reducing Torch parallelism from 64 threads to 1 to avoid unnecessary CPU contention. Set OMP_NUM_THREADS in the external environment to tune this value as needed.\n",
      "INFO 06-09 04:41:25 [cuda.py:240] Cannot use FlashAttention-2 backend for Volta and Turing GPUs.\n",
      "INFO 06-09 04:41:25 [cuda.py:289] Using XFormers backend.\n",
      "INFO 06-09 04:41:29 [__init__.py:243] Automatically detected platform cuda.\n",
      "\u001b[1;36m(VllmWorkerProcess pid=85107)\u001b[0;0m INFO 06-09 04:41:32 [multiproc_worker_utils.py:225] Worker ready; awaiting tasks\n",
      "\u001b[1;36m(VllmWorkerProcess pid=85107)\u001b[0;0m INFO 06-09 04:41:32 [__init__.py:31] Available plugins for group vllm.general_plugins:\n",
      "\u001b[1;36m(VllmWorkerProcess pid=85107)\u001b[0;0m INFO 06-09 04:41:32 [__init__.py:33] - lora_filesystem_resolver -> vllm.plugins.lora_resolvers.filesystem_resolver:register_filesystem_resolver\n",
      "\u001b[1;36m(VllmWorkerProcess pid=85107)\u001b[0;0m INFO 06-09 04:41:32 [__init__.py:36] All plugins in this group will be loaded. Set `VLLM_PLUGINS` to control which plugins to load.\n",
      "\u001b[1;36m(VllmWorkerProcess pid=85107)\u001b[0;0m INFO 06-09 04:41:32 [cuda.py:240] Cannot use FlashAttention-2 backend for Volta and Turing GPUs.\n",
      "\u001b[1;36m(VllmWorkerProcess pid=85107)\u001b[0;0m INFO 06-09 04:41:32 [cuda.py:289] Using XFormers backend.\n",
      "INFO 06-09 04:41:33 [utils.py:1077] Found nccl from library libnccl.so.2\n",
      "INFO 06-09 04:41:33 [pynccl.py:69] vLLM is using nccl==2.26.2\n",
      "\u001b[1;36m(VllmWorkerProcess pid=85107)\u001b[0;0m INFO 06-09 04:41:33 [utils.py:1077] Found nccl from library libnccl.so.2\n",
      "\u001b[1;36m(VllmWorkerProcess pid=85107)\u001b[0;0m INFO 06-09 04:41:33 [pynccl.py:69] vLLM is using nccl==2.26.2\n",
      "\u001b[1;36m(VllmWorkerProcess pid=85107)\u001b[0;0m INFO 06-09 04:41:34 [custom_all_reduce_utils.py:245] reading GPU P2P access cache from /home/jovyan/.cache/vllm/gpu_p2p_access_cache_for_0,1.json\n",
      "\u001b[1;36m(VllmWorkerProcess pid=85107)\u001b[0;0m WARNING 06-09 04:41:34 [custom_all_reduce.py:146] Custom allreduce is disabled because your platform lacks GPU P2P capability or P2P test failed. To silence this warning, specify disable_custom_all_reduce=True explicitly.\n",
      "INFO 06-09 04:41:34 [custom_all_reduce_utils.py:245] reading GPU P2P access cache from /home/jovyan/.cache/vllm/gpu_p2p_access_cache_for_0,1.json\n",
      "WARNING 06-09 04:41:34 [custom_all_reduce.py:146] Custom allreduce is disabled because your platform lacks GPU P2P capability or P2P test failed. To silence this warning, specify disable_custom_all_reduce=True explicitly.\n",
      "INFO 06-09 04:41:34 [shm_broadcast.py:250] vLLM message queue communication handle: Handle(local_reader_ranks=[1], buffer_handle=(1, 4194304, 6, 'psm_523dee68'), local_subscribe_addr='ipc:///tmp/4d2d0127-8b88-42ce-ba52-5c7e4aac03b6', remote_subscribe_addr=None, remote_addr_ipv6=False)\n",
      "INFO 06-09 04:41:34 [parallel_state.py:1064] rank 0 in world size 2 is assigned as DP rank 0, PP rank 0, TP rank 0, EP rank 0\n",
      "\u001b[1;36m(VllmWorkerProcess pid=85107)\u001b[0;0m INFO 06-09 04:41:34 [parallel_state.py:1064] rank 1 in world size 2 is assigned as DP rank 0, PP rank 0, TP rank 1, EP rank 1\n",
      "INFO 06-09 04:41:34 [model_runner.py:1170] Starting to load model Qwen/Qwen3-Embedding-4B...\n",
      "\u001b[1;36m(VllmWorkerProcess pid=85107)\u001b[0;0m INFO 06-09 04:41:34 [model_runner.py:1170] Starting to load model Qwen/Qwen3-Embedding-4B...\n",
      "INFO 06-09 04:41:34 [weight_utils.py:291] Using model weights format ['*.safetensors']\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Loading safetensors checkpoint shards:   0% Completed | 0/2 [00:00<?, ?it/s]\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\u001b[1;36m(VllmWorkerProcess pid=85107)\u001b[0;0m INFO 06-09 04:41:35 [weight_utils.py:291] Using model weights format ['*.safetensors']\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Loading safetensors checkpoint shards:  50% Completed | 1/2 [00:04<00:04,  4.64s/it]\n",
      "Loading safetensors checkpoint shards: 100% Completed | 2/2 [00:11<00:00,  6.00s/it]\n",
      "Loading safetensors checkpoint shards: 100% Completed | 2/2 [00:11<00:00,  5.79s/it]\n",
      "\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\u001b[1;36m(VllmWorkerProcess pid=85107)\u001b[0;0m INFO 06-09 04:41:46 [default_loader.py:280] Loading weights took 11.40 seconds\n",
      "INFO 06-09 04:41:46 [default_loader.py:280] Loading weights took 11.81 seconds\n",
      "\u001b[1;36m(VllmWorkerProcess pid=85107)\u001b[0;0m INFO 06-09 04:41:47 [model_runner.py:1202] Model loading took 3.8162 GiB and 12.679641 seconds\n",
      "INFO 06-09 04:41:47 [model_runner.py:1202] Model loading took 3.8162 GiB and 12.722510 seconds\n",
      "INFO 06-09 04:41:47 [api_server.py:1336] Starting vLLM API server on http://0.0.0.0:8000\n",
      "INFO 06-09 04:41:47 [launcher.py:28] Available routes are:\n",
      "INFO 06-09 04:41:47 [launcher.py:36] Route: /openapi.json, Methods: HEAD, GET\n",
      "INFO 06-09 04:41:47 [launcher.py:36] Route: /docs, Methods: HEAD, GET\n",
      "INFO 06-09 04:41:47 [launcher.py:36] Route: /docs/oauth2-redirect, Methods: HEAD, GET\n",
      "INFO 06-09 04:41:47 [launcher.py:36] Route: /redoc, Methods: HEAD, GET\n",
      "INFO 06-09 04:41:47 [launcher.py:36] Route: /health, Methods: GET\n",
      "INFO 06-09 04:41:47 [launcher.py:36] Route: /load, Methods: GET\n",
      "INFO 06-09 04:41:47 [launcher.py:36] Route: /ping, Methods: POST\n",
      "INFO 06-09 04:41:47 [launcher.py:36] Route: /ping, Methods: GET\n",
      "INFO 06-09 04:41:47 [launcher.py:36] Route: /tokenize, Methods: POST\n",
      "INFO 06-09 04:41:47 [launcher.py:36] Route: /detokenize, Methods: POST\n",
      "INFO 06-09 04:41:47 [launcher.py:36] Route: /v1/models, Methods: GET\n",
      "INFO 06-09 04:41:47 [launcher.py:36] Route: /version, Methods: GET\n",
      "INFO 06-09 04:41:47 [launcher.py:36] Route: /v1/chat/completions, Methods: POST\n",
      "INFO 06-09 04:41:47 [launcher.py:36] Route: /v1/completions, Methods: POST\n",
      "INFO 06-09 04:41:47 [launcher.py:36] Route: /v1/embeddings, Methods: POST\n",
      "INFO 06-09 04:41:47 [launcher.py:36] Route: /pooling, Methods: POST\n",
      "INFO 06-09 04:41:47 [launcher.py:36] Route: /classify, Methods: POST\n",
      "INFO 06-09 04:41:47 [launcher.py:36] Route: /score, Methods: POST\n",
      "INFO 06-09 04:41:47 [launcher.py:36] Route: /v1/score, Methods: POST\n",
      "INFO 06-09 04:41:47 [launcher.py:36] Route: /v1/audio/transcriptions, Methods: POST\n",
      "INFO 06-09 04:41:47 [launcher.py:36] Route: /rerank, Methods: POST\n",
      "INFO 06-09 04:41:47 [launcher.py:36] Route: /v1/rerank, Methods: POST\n",
      "INFO 06-09 04:41:47 [launcher.py:36] Route: /v2/rerank, Methods: POST\n",
      "INFO 06-09 04:41:47 [launcher.py:36] Route: /invocations, Methods: POST\n",
      "INFO 06-09 04:41:47 [launcher.py:36] Route: /metrics, Methods: GET\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "INFO:     Started server process [84514]\n",
      "INFO:     Waiting for application startup.\n",
      "INFO:     Application startup complete.\n"
     ]
    }
   ],
   "source": [
    "import os\n",
    "import subprocess\n",
    "import threading\n",
    "import time\n",
    "\n",
    "# Set environment variable we need to support dual-GPU on Cirrus\n",
    "os.environ[\"NCCL_P2P_LEVEL\"] = \"NVL\"\n",
    "os.environ[\"VLLM_API_KEY\"] = os.getenv(\"OPENAI_API_KEY\") # set same key for simplicity\n",
    "\n",
    "# https://huggingface.co/spaces/mteb/leaderboard \n",
    "def run_vllm_server():\n",
    "    subprocess.run([\n",
    "        \"vllm\", \"serve\", \"Qwen/Qwen3-Embedding-4B\",\n",
    "        \"--host\", \"0.0.0.0\",\n",
    "        \"--port\", \"8000\",\n",
    "        \"--tensor-parallel-size\", \"2\",\n",
    "        \"--trust-remote-code\",\n",
    "        \"--gpu-memory-utilization\", \"0.4\",\n",
    "        \"--enforce-eager\",\n",
    "        \"--served-model-name\", \"local\",\n",
    "        \"--task\", \"embed\" # Run in embed mode!  (default is 'generate')\n",
    "    ])\n",
    "\n",
    "# Start server in daemon thread\n",
    "server_thread = threading.Thread(target=run_vllm_server, daemon=True)\n",
    "server_thread.start()\n",
    "\n",
    "## give server time to start up:\n",
    "import time\n",
    "# Pause execution for 100 seconds (may take longer but usually 1 min is enough)\n",
    "time.sleep(100)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "id": "9a8397fa-6896-40a5-97d9-1d0c98797b35",
   "metadata": {},
   "outputs": [],
   "source": [
    "## wait for output above to print routes, ending with: \n",
    "## INFO:     Application startup complete.\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "id": "24b64902-1305-43e7-9da8-e4d82d097cb5",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "INFO 06-09 04:42:36 [logger.py:42] Received request embd-db52ec2756c34681b66267b7d54e1c82-0: prompt: ' product down', params: PoolingParams(dimensions=None, additional_metadata=None), prompt_token_ids: [1985, 1495], prompt_embeds shape: None, lora_request: None, prompt_adapter_request: None.\n",
      "INFO 06-09 04:42:36 [engine.py:316] Added request embd-db52ec2756c34681b66267b7d54e1c82-0.\n",
      "INFO 06-09 04:42:38 [metrics.py:486] Avg prompt throughput: 0.2 tokens/s, Avg generation throughput: 0.1 tokens/s, Running: 0 reqs, Swapped: 0 reqs, Pending: 0 reqs, GPU KV cache usage: 0.0%, CPU KV cache usage: 0.0%.\n",
      "INFO:     127.0.0.1:43468 - \"POST /v1/embeddings HTTP/1.1\" 200 OK\n"
     ]
    }
   ],
   "source": [
    "## NOTE!  You must wait until the log above finishes and not just the cell.\n",
    "## Connect to the local model\n",
    "from langchain_openai import OpenAIEmbeddings\n",
    "embedding = OpenAIEmbeddings(\n",
    "                 model = \"local\", ## served model name\n",
    "                 api_key = os.getenv(\"OPENAI_API_KEY\"),\n",
    "                 base_url = \"http://localhost:8000/v1\",\n",
    ")\n",
    "\n",
    "## test that the model can do embeddings\n",
    "from langchain_core.vectorstores import InMemoryVectorStore\n",
    "vectorstore = InMemoryVectorStore.from_texts([\"test text\"], embedding=embedding)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "id": "95ed10f3-5339-40cd-bf16-b0854f8b4b91",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "INFO 06-09 04:42:48 [metrics.py:486] Avg prompt throughput: 0.0 tokens/s, Avg generation throughput: 0.0 tokens/s, Running: 0 reqs, Swapped: 0 reqs, Pending: 0 reqs, GPU KV cache usage: 0.0%, CPU KV cache usage: 0.0%.\n"
     ]
    }
   ],
   "source": [
    "import os\n",
    "import requests\n",
    "import zipfile\n",
    "import pathlib\n",
    "from langchain_community.document_loaders import PyPDFLoader\n",
    "\n",
    "def download_and_unzip(url, output_dir):\n",
    "    response = requests.get(url)\n",
    "    zip_file_path = os.path.basename(url)\n",
    "    with open(zip_file_path, 'wb') as f:\n",
    "        f.write(response.content)\n",
    "    with zipfile.ZipFile(zip_file_path, 'r') as zip_ref:\n",
    "        zip_ref.extractall(output_dir)\n",
    "    os.remove(zip_file_path)\n",
    "\n",
    "def pdf_loader(path):\n",
    "    all_documents = []\n",
    "    docs_dir = pathlib.Path(path)\n",
    "    for file in docs_dir.iterdir():\n",
    "        loader = PyPDFLoader(file)\n",
    "        documents = loader.load()\n",
    "        all_documents.extend(documents)\n",
    "    return all_documents\n",
    "\n",
    "download_and_unzip(\"https://minio.carlboettiger.info/public-data/hwc.zip\", 'hwc')\n",
    "docs = pdf_loader('hwc/')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "id": "631a65a5",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Split the parsed pdf documents\n",
    "\n",
    "from langchain_text_splitters import RecursiveCharacterTextSplitter\n",
    "text_splitter = RecursiveCharacterTextSplitter(chunk_size=2000, chunk_overlap=200)\n",
    "splits = text_splitter.split_documents(docs)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "id": "b7b8973b",
   "metadata": {},
   "outputs": [],
   "source": [
    "\n",
    "# create an id for each split\n",
    "from uuid import uuid4\n",
    "uuids = [str(uuid4()) for _ in range(len(splits))]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "24facce1",
   "metadata": {},
   "outputs": [],
   "source": [
    "from langchain_qdrant import QdrantVectorStore\n",
    "from qdrant_client import QdrantClient\n",
    "from qdrant_client.http.models import Distance, VectorParams\n",
    "\n",
    "client = QdrantClient(path = \"hwc_qdrant.db\")\n",
    "\n",
    "# create a new store\n",
    "client.create_collection(\n",
    "    collection_name=\"demo_collection\",\n",
    "    vectors_config=VectorParams(size=2560, distance=Distance.COSINE),\n",
    ")\n",
    "\n",
    "# can connect to an existing store\n",
    "vector_store = QdrantVectorStore(\n",
    "    client=client,\n",
    "    collection_name=\"demo_collection\",\n",
    "    embedding=embedding\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "38f5e60e",
   "metadata": {},
   "outputs": [],
   "source": [
    "\n",
    "# slow part here, runs on remote GPU\n",
    "vector_store.add_documents(documents=splits, ids=uuids)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "fd8bcc13-d06d-43dd-9e06-4f29da803133",
   "metadata": {
    "scrolled": true
   },
   "outputs": [],
   "source": [
    "# slow part here, runs on remote GPU\n",
    "# vectorstore = vector_store.from_documents(documents=splits, embedding = embedding)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "c6e99791-8f34-4722-9708-665e409c26bd",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Set up the Chat model from one of the NRP models\n",
    "import os\n",
    "api_key = os.getenv(\"OPENAI_API_KEY\")\n",
    "\n",
    "# see `curl -H \"Authorization: Bearer $OPENAI_API_KEY\" https://llm.nrp-nautilus.io/v1/models`\n",
    "models = {\"llama3\": \"llama3-sdsc\", \n",
    "          \"deepseek-small\": \"DeepSeek-R1-Distill-Qwen-32B\",\n",
    "          \"deepseek\": \"deepseek-r1-qwen-qualcomm\",\n",
    "          \"gemma3\": \"gemma3\",\n",
    "          \"phi3\": \"phi3\",\n",
    "          \"olmo\": \"olmo\"\n",
    "         }\n",
    "\n",
    "from langchain_openai import ChatOpenAI\n",
    "llm = ChatOpenAI(model = models[\"gemma3\"], \n",
    "                 api_key = api_key, \n",
    "                 base_url = \"https://llm.nrp-nautilus.io\",  \n",
    "                 temperature=0)\n",
    "\n",
    "# Embedding model from NRP usually times out.\n",
    "#embedding = OpenAIEmbeddings(model = \"embed-mistral\", api_key = api_key, base_url = \"https://llm.nrp-nautilus.io\")\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "2bf50abf-5ccd-4de5-9fc4-c9043a66a108",
   "metadata": {},
   "outputs": [],
   "source": [
    "from langchain.chains import create_retrieval_chain\n",
    "from langchain.chains.combine_documents import create_stuff_documents_chain\n",
    "from langchain_core.prompts import ChatPromptTemplate\n",
    "system_prompt = (\n",
    "    \"You are an assistant for question-answering tasks. \"\n",
    "    \"Use the following scientific articles as the retrieved context to answer \"\n",
    "    \"the question. Appropriately cite the articles from the context on which your answer is based. \"\n",
    "    \"Do not attempt to cite articles that are not in the context.\"\n",
    "    \"If you don't know the answer, say that you don't know.\"\n",
    "    \"Use up to five sentences maximum and keep the \"\n",
    "    \"answer concise.\"\n",
    "    \"\\n\\n\"\n",
    "    \"{context}\"\n",
    ")\n",
    "prompt = ChatPromptTemplate.from_messages(\n",
    "    [\n",
    "        (\"system\", system_prompt),\n",
    "        (\"human\", \"{input}\"),\n",
    "    ]\n",
    ")\n",
    "\n",
    "\n",
    "question_answer_chain = create_stuff_documents_chain(llm, prompt)\n",
    "\n",
    "retriever = vectorstore.as_retriever()\n",
    "rag_chain = create_retrieval_chain(retriever, question_answer_chain)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "e15c64e7-0916-4042-8274-870e4fdb1af7",
   "metadata": {},
   "outputs": [],
   "source": [
    "prompt = \"I live in Tanzania and am having issues with lions breaking into my boma and preying on cattle. What interventions might work best for me?\"\n",
    "results = rag_chain.invoke({\"input\": prompt})\n",
    "results"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "35613607-2c36-4761-a8ea-8c0889530f34",
   "metadata": {},
   "outputs": [],
   "source": [
    "prompt = \"What are the most cost-effective prevention methods for elephants raiding my crops?\"\n",
    "\n",
    "results = rag_chain.invoke({\"input\": prompt})\n",
    "results"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "3dfc39f6-86e9-47c3-ab67-08f90ebbb823",
   "metadata": {},
   "outputs": [],
   "source": [
    "rag_chain.invoke({\"input\": \n",
    "                  \"I have a small herd of goats and cattle and I am worried about jaguars preying on them. What preventative measures can I take?\"\n",
    "                 })"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "56091874-0e41-4b35-be4f-08d8ec6faf56",
   "metadata": {},
   "outputs": [],
   "source": [
    "rag_chain.invoke({\"input\": \"I am trying to prevent coyotes from eating the calves of my free-range cattle. What may work best?\"})"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "918dc691-6c66-46b2-8930-01dbeb6f712b",
   "metadata": {},
   "outputs": [],
   "source": [
    "rag_chain.invoke({\"input\": \"We have major issues with deer raiding our large agricultural fields. Is there anything I can try to prevent this that won’t break the bank?\"})"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "07b9578c-9a89-4874-a34d-30a060ed3407",
   "metadata": {},
   "outputs": [],
   "source": [
    "rag_chain.invoke({\"input\": \"We live in a suburban area and bears sometimes come into our town to eat from our fruit trees and trash. What are the best ways for us to prevent this as a community? We don’t want to have to get rid of our fruit trees…\"})"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "ba272b88-1622-4d06-9361-7f1e2ca89e73",
   "metadata": {},
   "outputs": [],
   "source": [
    "prompt = \"What cattle husbandry strategies might be helpful to prevent conflict if we live in wolf country?\"\n",
    "\n",
    "rag_chain.invoke({\"input\": prompt})"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "9d4d1bf4-4084-430d-8b2d-39ce1d6815db",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "d4bf2492-6852-43a7-8527-06ee4e9848c0",
   "metadata": {},
   "outputs": [],
   "source": [
    "## DRAFT exploring other embedding databases\n",
    "\n",
    "import os\n",
    "from langchain_community.vectorstores import FAISS\n",
    "from langchain_community.vectorstores import Chroma\n",
    "from langchain_community.vectorstores import Qdrant\n",
    "from qdrant_client import QdrantClient\n",
    "from qdrant_client.models import Distance, VectorParams\n",
    "import gc\n",
    "import torch\n",
    "\n",
    "# Option 1: FAISS (Facebook AI Similarity Search) - Most memory efficient\n",
    "def create_faiss_vectorstore(splits, embedding, persist_directory=\"./faiss_db\", batch_size=100):\n",
    "    \"\"\"\n",
    "    Create FAISS vector store with batched processing to minimize GPU RAM usage\n",
    "    \"\"\"\n",
    "    os.makedirs(persist_directory, exist_ok=True)\n",
    "    \n",
    "    # Process documents in batches to avoid GPU memory overflow\n",
    "    vectorstore = None\n",
    "    \n",
    "    for i in range(0, len(splits), batch_size):\n",
    "        batch = splits[i:i + batch_size]\n",
    "        print(f\"Processing batch {i//batch_size + 1}/{(len(splits) + batch_size - 1)//batch_size}\")\n",
    "        \n",
    "        if vectorstore is None:\n",
    "            # Create initial vectorstore with first batch\n",
    "            vectorstore = FAISS.from_documents(\n",
    "                documents=batch,\n",
    "                embedding=embedding\n",
    "            )\n",
    "        else:\n",
    "            # Add subsequent batches to existing vectorstore\n",
    "            batch_vectorstore = FAISS.from_documents(\n",
    "                documents=batch,\n",
    "                embedding=embedding\n",
    "            )\n",
    "            vectorstore.merge_from(batch_vectorstore)\n",
    "            \n",
    "            # Clean up temporary vectorstore\n",
    "            del batch_vectorstore\n",
    "        \n",
    "        # Force garbage collection and clear GPU cache if using CUDA\n",
    "        gc.collect()\n",
    "        if torch.cuda.is_available():\n",
    "            torch.cuda.empty_cache()\n",
    "    \n",
    "    # Save to disk\n",
    "    vectorstore.save_local(persist_directory)\n",
    "    print(f\"Vector store saved to {persist_directory}\")\n",
    "    \n",
    "    return vectorstore\n",
    "\n",
    "def load_faiss_vectorstore(embedding, persist_directory=\"./faiss_db\"):\n",
    "    \"\"\"Load existing FAISS vector store from disk\"\"\"\n",
    "    return FAISS.load_local(\n",
    "        persist_directory,\n",
    "        embedding,\n",
    "        allow_dangerous_deserialization=True  # Only if you trust the source\n",
    "    )\n",
    "\n",
    "# Option 2: Chroma - Persistent SQLite-based storage\n",
    "def create_chroma_vectorstore(splits, embedding, persist_directory=\"./chroma_db\", batch_size=100):\n",
    "    \"\"\"\n",
    "    Create Chroma vector store with batched processing\n",
    "    \"\"\"\n",
    "    # Initialize Chroma with persistence\n",
    "    vectorstore = Chroma(\n",
    "        persist_directory=persist_directory,\n",
    "        embedding_function=embedding\n",
    "    )\n",
    "    \n",
    "    # Add documents in batches\n",
    "    for i in range(0, len(splits), batch_size):\n",
    "        batch = splits[i:i + batch_size]\n",
    "        print(f\"Processing batch {i//batch_size + 1}/{(len(splits) + batch_size - 1)//batch_size}\")\n",
    "        \n",
    "        vectorstore.add_documents(batch)\n",
    "        \n",
    "        # Force garbage collection and clear GPU cache\n",
    "        gc.collect()\n",
    "        if torch.cuda.is_available():\n",
    "            torch.cuda.empty_cache()\n",
    "    \n",
    "    # Persist to disk\n",
    "    vectorstore.persist()\n",
    "    print(f\"Vector store persisted to {persist_directory}\")\n",
    "    \n",
    "    return vectorstore\n",
    "\n",
    "def load_chroma_vectorstore(embedding, persist_directory=\"./chroma_db\"):\n",
    "    \"\"\"Load existing Chroma vector store from disk\"\"\"\n",
    "    return Chroma(\n",
    "        persist_directory=persist_directory,\n",
    "        embedding_function=embedding\n",
    "    )\n",
    "\n",
    "# Option 3: Qdrant - High-performance vector database\n",
    "def create_qdrant_vectorstore(splits, embedding, collection_name=\"documents\", \n",
    "                            path=\"./qdrant_db\", batch_size=100):\n",
    "    \"\"\"\n",
    "    Create Qdrant vector store with local file-based storage\n",
    "    \"\"\"\n",
    "    # Initialize local Qdrant client\n",
    "    client = QdrantClient(path=path)\n",
    "    \n",
    "    # Get embedding dimension (embed a sample text)\n",
    "    sample_embedding = embedding.embed_query(\"sample text\")\n",
    "    embedding_dim = len(sample_embedding)\n",
    "    \n",
    "    # Create collection if it doesn't exist\n",
    "    try:\n",
    "        client.create_collection(\n",
    "            collection_name=collection_name,\n",
    "            vectors_config=VectorParams(size=embedding_dim, distance=Distance.COSINE)\n",
    "        )\n",
    "    except Exception as e:\n",
    "        print(f\"Collection might already exist: {e}\")\n",
    "    \n",
    "    # Create vectorstore\n",
    "    vectorstore = Qdrant(\n",
    "        client=client,\n",
    "        collection_name=collection_name,\n",
    "        embeddings=embedding\n",
    "    )\n",
    "    \n",
    "    # Add documents in batches\n",
    "    for i in range(0, len(splits), batch_size):\n",
    "        batch = splits[i:i + batch_size]\n",
    "        print(f\"Processing batch {i//batch_size + 1}/{(len(splits) + batch_size - 1)//batch_size}\")\n",
    "        \n",
    "        vectorstore.add_documents(batch)\n",
    "        \n",
    "        # Force garbage collection and clear GPU cache\n",
    "        gc.collect()\n",
    "        if torch.cuda.is_available():\n",
    "            torch.cuda.empty_cache()\n",
    "    \n",
    "    print(f\"Vector store created in {path}\")\n",
    "    return vectorstore\n",
    "\n",
    "def load_qdrant_vectorstore(embedding, collection_name=\"documents\", path=\"./qdrant_db\"):\n",
    "    \"\"\"Load existing Qdrant vector store from disk\"\"\"\n",
    "    client = QdrantClient(path=path)\n",
    "    return Qdrant(\n",
    "        client=client,\n",
    "        collection_name=collection_name,\n",
    "        embeddings=embedding\n",
    "    )\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "3cf725ad-69a3-4abd-9907-52427babf6d5",
   "metadata": {},
   "outputs": [],
   "source": [
    "\n",
    "# Usage examples:\n",
    "\n",
    "# Replace your original code with one of these options:\n",
    "\n",
    "# Option 1: FAISS (Recommended for most use cases)\n",
    "vectorstore = create_faiss_vectorstore(\n",
    "    splits=splits, \n",
    "    embedding=embedding, \n",
    "    persist_directory=\"./my_faiss_db\",\n",
    "    batch_size=50  # Adjust based on your GPU memory\n",
    ")\n",
    "\n",
    "# To load later:\n",
    "# vectorstore = load_faiss_vectorstore(embedding, \"./my_faiss_db\")\n",
    "\n",
    "# Option 2: Chroma (Good for development and moderate scale)\n",
    "# vectorstore = create_chroma_vectorstore(\n",
    "#     splits=splits,\n",
    "#     embedding=embedding,\n",
    "#     persist_directory=\"./my_chroma_db\",\n",
    "#     batch_size=50\n",
    "# )\n",
    "\n",
    "# Option 3: Qdrant (Best for production and very large scale)\n",
    "# vectorstore = create_qdrant_vectorstore(\n",
    "#     splits=splits,\n",
    "#     embedding=embedding,\n",
    "#     collection_name=\"my_documents\",\n",
    "#     path=\"./my_qdrant_db\",\n",
    "#     batch_size=50\n",
    "# )\n",
    "\n",
    "# Memory optimization settings\n",
    "def optimize_gpu_memory():\n",
    "    \"\"\"Additional GPU memory optimization\"\"\"\n",
    "    if torch.cuda.is_available():\n",
    "        # Set memory fraction if needed\n",
    "        torch.cuda.set_per_process_memory_fraction(0.8)  # Use 80% of GPU memory\n",
    "        \n",
    "        # Enable memory mapping for large tensors\n",
    "        torch.backends.cuda.matmul.allow_tf32 = True\n",
    "        torch.backends.cudnn.allow_tf32 = True\n",
    "\n",
    "# Call before processing if you have GPU memory issues\n",
    "# optimize_gpu_memory()"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "base",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.12.10"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}