Spaces:
Sleeping
Sleeping
import os | |
import feedparser | |
from chromadb import PersistentClient | |
from langchain_community.embeddings import HuggingFaceEmbeddings | |
from langchain_core.documents import Document | |
import logging | |
from huggingface_hub import HfApi, login, snapshot_download | |
from datetime import datetime | |
import dateutil.parser | |
import hashlib | |
import json | |
import re | |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') | |
logger = logging.getLogger(__name__) | |
LOCAL_DB_DIR = "chroma_db" | |
FEEDS_FILE = "rss_feeds.json" | |
COLLECTION_NAME = "news_articles" | |
HF_API_TOKEN = os.getenv("HF_TOKEN") | |
REPO_ID = "broadfield-dev/news-rag-db" | |
MAX_ARTICLES_PER_FEED = 1000 | |
def initialize_hf_api(): | |
if not HF_API_TOKEN: | |
logger.error("Hugging Face API token (HF_TOKEN) not set.") | |
raise ValueError("HF_TOKEN environment variable is not set.") | |
try: | |
login(token=HF_API_TOKEN) | |
return HfApi() | |
except Exception as e: | |
logger.error(f"Failed to login to Hugging Face Hub: {e}") | |
raise | |
def get_embedding_model(): | |
if not hasattr(get_embedding_model, "model"): | |
get_embedding_model.model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2") | |
return get_embedding_model.model | |
def clean_text(text): | |
if not text or not isinstance(text, str): | |
return "" | |
text = re.sub(r'<.*?>', '', text) | |
text = ' '.join(text.split()) | |
return text.strip() | |
def fetch_rss_feeds(): | |
articles = [] | |
seen_links = set() | |
try: | |
with open(FEEDS_FILE, 'r') as f: | |
feed_categories = json.load(f) | |
except FileNotFoundError: | |
logger.error(f"{FEEDS_FILE} not found. No feeds to process.") | |
return [] | |
for category, feeds in feed_categories.items(): | |
for feed_info in feeds: | |
feed_url = feed_info.get("url") | |
if not feed_url: | |
logger.warning(f"Skipping feed with no URL in category '{category}'") | |
continue | |
try: | |
logger.info(f"Fetching {feed_url}") | |
feed = feedparser.parse(feed_url) | |
if feed.bozo: | |
logger.warning(f"Parse error for {feed_url}: {feed.bozo_exception}") | |
continue | |
for entry in feed.entries[:MAX_ARTICLES_PER_FEED]: | |
link = entry.get("link", "") | |
if not link or link in seen_links: | |
continue | |
seen_links.add(link) | |
title = entry.get("title", "No Title") | |
description_raw = entry.get("summary", entry.get("description", "")) | |
description = clean_text(description_raw) | |
if not description: | |
continue | |
published_str = "Unknown Date" | |
for date_field in ["published", "updated", "created", "pubDate"]: | |
if date_field in entry: | |
try: | |
parsed_date = dateutil.parser.parse(entry[date_field]) | |
published_str = parsed_date.isoformat() | |
break | |
except (ValueError, TypeError): | |
continue | |
image = "svg" | |
image_sources = [ | |
lambda e: e.get("media_content", [{}])[0].get("url") if e.get("media_content") else None, | |
lambda e: e.get("media_thumbnail", [{}])[0].get("url") if e.get("media_thumbnail") else None, | |
lambda e: e.get("enclosure", {}).get("url") if e.get("enclosure") and e.get("enclosure", {}).get('type', '').startswith('image') else None, | |
lambda e: next((lnk.get("href") for lnk in e.get("links", []) if lnk.get("type", "").startswith("image")), None), | |
] | |
for source_func in image_sources: | |
try: | |
img_url = source_func(entry) | |
if img_url and isinstance(img_url, str) and img_url.strip(): | |
image = img_url | |
break | |
except (IndexError, AttributeError, TypeError): | |
continue | |
articles.append({ | |
"title": title, | |
"link": link, | |
"description": description, | |
"published": published_str, | |
"category": category, | |
"image": image, | |
}) | |
except Exception as e: | |
logger.error(f"Error fetching or parsing {feed_url}: {e}") | |
logger.info(f"Total unique articles fetched: {len(articles)}") | |
return articles | |
def process_and_store_articles(articles): | |
if not os.path.exists(LOCAL_DB_DIR): | |
os.makedirs(LOCAL_DB_DIR) | |
client = PersistentClient(path=LOCAL_DB_DIR) | |
collection = client.get_or_create_collection(name=COLLECTION_NAME) | |
try: | |
existing_ids = set(collection.get(include=[])["ids"]) | |
logger.info(f"Loaded {len(existing_ids)} existing document IDs from {LOCAL_DB_DIR}.") | |
except Exception: | |
logger.info("No existing DB found or it is empty. Starting fresh.") | |
existing_ids = set() | |
contents_to_add = [] | |
metadatas_to_add = [] | |
ids_to_add = [] | |
for article in articles: | |
if not article.get('link'): | |
continue | |
doc_id = hashlib.sha256(article['link'].encode('utf-8')).hexdigest() | |
if doc_id in existing_ids: | |
continue | |
metadata = { | |
"title": article["title"], | |
"link": article["link"], | |
"published": article["published"], | |
"category": article["category"], | |
"image": article["image"], | |
} | |
contents_to_add.append(article["description"]) | |
metadatas_to_add.append(metadata) | |
ids_to_add.append(doc_id) | |
if ids_to_add: | |
logger.info(f"Found {len(ids_to_add)} new articles to add to the database.") | |
try: | |
embedding_model = get_embedding_model() | |
embeddings_to_add = embedding_model.embed_documents(contents_to_add) | |
collection.add( | |
embeddings=embeddings_to_add, | |
documents=contents_to_add, | |
metadatas=metadatas_to_add, | |
ids=ids_to_add | |
) | |
logger.info(f"Successfully added {len(ids_to_add)} new articles to DB. Total in DB: {collection.count()}") | |
except Exception as e: | |
logger.error(f"Error storing articles in ChromaDB: {e}", exc_info=True) | |
else: | |
logger.info("No new articles to add to the database.") | |
def download_from_hf_hub(): | |
if not os.path.exists(os.path.join(LOCAL_DB_DIR, "chroma.sqlite3")): | |
try: | |
logger.info(f"Downloading Chroma DB from {REPO_ID} to {LOCAL_DB_DIR}...") | |
snapshot_download( | |
repo_id=REPO_ID, | |
repo_type="dataset", | |
local_dir=".", | |
local_dir_use_symlinks=False, | |
allow_patterns=[f"{LOCAL_DB_DIR}/**"], | |
token=HF_API_TOKEN | |
) | |
logger.info("Finished downloading DB.") | |
except Exception as e: | |
logger.warning(f"Could not download from Hugging Face Hub (this is normal on first run): {e}") | |
else: | |
logger.info(f"Local Chroma DB found at '{LOCAL_DB_DIR}', skipping download.") | |
def upload_to_hf_hub(hf_api): | |
if os.path.exists(LOCAL_DB_DIR): | |
try: | |
logger.info(f"Uploading updated Chroma DB '{LOCAL_DB_DIR}' to {REPO_ID}...") | |
hf_api.upload_folder( | |
folder_path=LOCAL_DB_DIR, | |
path_in_repo=LOCAL_DB_DIR, | |
repo_id=REPO_ID, | |
repo_type="dataset", | |
commit_message=f"Update RSS news database {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}", | |
ignore_patterns=["*.bak", "*.tmp"] | |
) | |
logger.info(f"Database folder '{LOCAL_DB_DIR}' uploaded to: {REPO_ID}") | |
except Exception as e: | |
logger.error(f"Error uploading to Hugging Face Hub: {e}", exc_info=True) | |
def main(): | |
try: | |
hf_api = initialize_hf_api() | |
download_from_hf_hub() | |
articles_to_process = fetch_rss_feeds() | |
if articles_to_process: | |
process_and_store_articles(articles_to_process) | |
upload_to_hf_hub(hf_api) | |
else: | |
logger.info("No articles fetched, skipping database processing and upload.") | |
except Exception as e: | |
logger.critical(f"An unhandled error occurred in main execution: {e}", exc_info=True) | |
if __name__ == "__main__": | |
main() |