gguf-test / app.py
broadfield-dev's picture
Create app.py
2ed2a6c verified
import gradio as gr
from huggingface_hub import hf_hub_download
from llama_cpp import Llama
# Define model details
MODEL_REPO = "TheBloke/vicuna-13B-v1.5-16K-GGUF" # You can swap this for Mistral-7B or another GGUF model
MODEL_FILE = "vicuna-13b-v1.5-16k.Q4_K_M.gguf" # 4-bit quantized model file
# Download the quantized model from Hugging Face
model_path = hf_hub_download(repo_id=MODEL_REPO, filename=MODEL_FILE)
# Load the model with llama.cpp for CPU-only inference
llm = Llama(
model_path=model_path,
n_gpu_layers=0, # Set to 0 for CPU-only
n_threads=4, # Adjust based on CPU cores (e.g., 4 for quad-core)
n_batch=512, # Batch size for inference
n_ctx=2048, # Context length (adjust based on RAM; 2048 fits ~16 GB)
verbose=False # Reduce logging for cleaner output
)
# Define the inference function
def generate_text(prompt, max_tokens=256, temperature=0.8, top_p=0.95):
try:
output = llm(
prompt,
max_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
repeat_penalty=1.1
)
return output["choices"][0]["text"].strip()
except Exception as e:
return f"Error: {str(e)}"
# Create Gradio interface
interface = gr.Interface(
fn=generate_text,
inputs=[
gr.Textbox(label="Prompt", placeholder="Enter your prompt here..."),
gr.Slider(label="Max Tokens", minimum=50, maximum=512, value=256, step=10),
gr.Slider(label="Temperature", minimum=0.1, maximum=2.0, value=0.8, step=0.1),
gr.Slider(label="Top P", minimum=0.1, maximum=1.0, value=0.95, step=0.05)
],
outputs=gr.Textbox(label="Generated Text"),
title="Quantized LLM on Hugging Face Spaces",
description="Run a 4-bit quantized Vicuna-13B model on CPU using llama.cpp",
theme="default"
)
# Launch the app
if __name__ == "__main__":
interface.launch(server_name="0.0.0.0", server_port=7860)