node_search / memory_logic.py
broadfield-dev's picture
Update memory_logic.py
13f9441 verified
# memory_logic.py
import os
import json
import time
from datetime import datetime
import logging
import re
import threading
# Conditionally import heavy dependencies
try:
from sentence_transformers import SentenceTransformer
import faiss
import numpy as np
except ImportError:
SentenceTransformer, faiss, np = None, None, None
logging.warning("SentenceTransformers, FAISS, or NumPy not installed. Semantic search will be unavailable.")
try:
import sqlite3
except ImportError:
sqlite3 = None
logging.warning("sqlite3 module not available. SQLite backend will be unavailable.")
try:
from datasets import load_dataset, Dataset
except ImportError:
load_dataset, Dataset = None, None
logging.warning("datasets library not installed. Hugging Face Dataset backend will be unavailable.")
logger = logging.getLogger(__name__)
# Suppress verbose logs from dependencies
for lib_name in ["sentence_transformers", "faiss", "datasets", "huggingface_hub"]:
if logging.getLogger(lib_name): # Check if logger exists
logging.getLogger(lib_name).setLevel(logging.WARNING)
# --- Configuration (Read directly from environment variables) ---
STORAGE_BACKEND = os.getenv("STORAGE_BACKEND", "HF_DATASET").upper() #HF_DATASET, RAM, SQLITE
SQLITE_DB_PATH = os.getenv("SQLITE_DB_PATH", "app_data/ai_memory.db") # Changed default path
HF_TOKEN = os.getenv("HF_TOKEN")
HF_MEMORY_DATASET_REPO = os.getenv("HF_MEMORY_DATASET_REPO", "broadfield-dev/ai-brain") # Example
HF_RULES_DATASET_REPO = os.getenv("HF_RULES_DATASET_REPO", "broadfield-dev/ai-rules") # Example
# --- Globals for RAG within this module ---
_embedder = None
_dimension = 384 # Default, will be set by embedder
_faiss_memory_index = None
_memory_items_list = [] # Stores JSON strings of memory objects for RAM, or loaded from DB/HF
_faiss_rules_index = None
_rules_items_list = [] # Stores rule text strings
_initialized = False
_init_lock = threading.Lock()
# --- Helper: SQLite Connection ---
def _get_sqlite_connection():
if not sqlite3:
raise ImportError("sqlite3 module is required for SQLite backend but not found.")
db_dir = os.path.dirname(SQLITE_DB_PATH)
if db_dir and not os.path.exists(db_dir):
os.makedirs(db_dir, exist_ok=True)
return sqlite3.connect(SQLITE_DB_PATH, timeout=10)
def _init_sqlite_tables():
if STORAGE_BACKEND != "SQLITE" or not sqlite3:
return
try:
with _get_sqlite_connection() as conn:
cursor = conn.cursor()
cursor.execute("""
CREATE TABLE IF NOT EXISTS memories (
id INTEGER PRIMARY KEY AUTOINCREMENT,
memory_json TEXT NOT NULL,
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
)
""")
cursor.execute("""
CREATE TABLE IF NOT EXISTS rules (
id INTEGER PRIMARY KEY AUTOINCREMENT,
rule_text TEXT NOT NULL UNIQUE,
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
)
""")
conn.commit()
logger.info("SQLite tables for memories and rules checked/created.")
except Exception as e:
logger.error(f"SQLite table initialization error: {e}", exc_info=True)
def _build_faiss_index(items_list, text_extraction_fn):
"""Builds a FAISS index from a list of items."""
if not _embedder:
logger.error("Cannot build FAISS index: Embedder not available.")
return None
index = faiss.IndexFlatL2(_dimension)
if not items_list:
return index
logger.info(f"Building FAISS index for {len(items_list)} items...")
texts_to_embed = [text_extraction_fn(item) for item in items_list]
try:
embeddings = _embedder.encode(texts_to_embed, convert_to_tensor=False, show_progress_bar=False)
embeddings_np = np.array(embeddings, dtype=np.float32)
if embeddings_np.ndim == 2 and embeddings_np.shape[0] == len(items_list):
index.add(embeddings_np)
logger.info(f"FAISS index built successfully with {index.ntotal} items.")
else:
logger.error(f"FAISS build failed: Embeddings shape error. Expected ({len(items_list)}, {_dimension}), Got {getattr(embeddings_np, 'shape', 'N/A')}")
return faiss.IndexFlatL2(_dimension) # Return empty index on failure
except Exception as e:
logger.error(f"Error building FAISS index: {e}", exc_info=True)
return faiss.IndexFlatL2(_dimension) # Return empty index on failure
return index
# --- Initialization ---
def initialize_memory_system():
global _initialized, _embedder, _dimension, _faiss_memory_index, _memory_items_list, _faiss_rules_index, _rules_items_list
with _init_lock:
if _initialized:
return
logger.info(f"Initializing memory system with backend: {STORAGE_BACKEND}")
init_start_time = time.time()
if not SentenceTransformer or not faiss or not np:
logger.error("Core RAG libraries not available. Cannot initialize semantic memory.")
return
if not _embedder:
try:
logger.info("Loading SentenceTransformer model (all-MiniLM-L6-v2)...")
_embedder = SentenceTransformer('all-MiniLM-L6-v2', cache_folder="./sentence_transformer_cache")
_dimension = _embedder.get_sentence_embedding_dimension() or 384
except Exception as e:
logger.critical(f"FATAL: Error loading SentenceTransformer: {e}", exc_info=True)
return
if STORAGE_BACKEND == "SQLITE": _init_sqlite_tables()
# Load Memories from persistent storage
temp_memories_json = []
if STORAGE_BACKEND == "SQLITE":
try: temp_memories_json = [row[0] for row in _get_sqlite_connection().execute("SELECT memory_json FROM memories")]
except Exception as e: logger.error(f"Error loading memories from SQLite: {e}")
elif STORAGE_BACKEND == "HF_DATASET":
try:
logger.info(f"Loading memories from HF Dataset: {HF_MEMORY_DATASET_REPO}")
dataset = load_dataset(HF_MEMORY_DATASET_REPO, token=HF_TOKEN, trust_remote_code=True)
if "train" in dataset and "memory_json" in dataset["train"].column_names:
temp_memories_json = [m for m in dataset["train"]["memory_json"] if isinstance(m, str) and m.strip()]
logger.info(f"Loaded {len(temp_memories_json)} valid memories from HF Dataset.")
else: logger.warning(f"HF Dataset {HF_MEMORY_DATASET_REPO} has no 'train' split or 'memory_json' column.")
except Exception as e: logger.error(f"Error loading memories from HF Dataset: {e}", exc_info=True)
_memory_items_list = temp_memories_json
# Build Memory FAISS Index
_faiss_memory_index = _build_faiss_index(
_memory_items_list,
lambda m: f"User: {json.loads(m).get('user_input', '')}\nAI: {json.loads(m).get('bot_response', '')}\nTakeaway: {json.loads(m).get('metrics', {}).get('takeaway', 'N/A')}"
)
# Load Rules from persistent storage
temp_rules_text = []
if STORAGE_BACKEND == "SQLITE":
try: temp_rules_text = [row[0] for row in _get_sqlite_connection().execute("SELECT rule_text FROM rules")]
except Exception as e: logger.error(f"Error loading rules from SQLite: {e}")
elif STORAGE_BACKEND == "HF_DATASET":
try:
logger.info(f"Loading rules from HF Dataset: {HF_RULES_DATASET_REPO}")
dataset = load_dataset(HF_RULES_DATASET_REPO, token=HF_TOKEN, trust_remote_code=True)
if "train" in dataset and "rule_text" in dataset["train"].column_names:
temp_rules_text = [r for r in dataset["train"]["rule_text"] if isinstance(r, str) and r.strip()]
logger.info(f"Loaded {len(temp_rules_text)} valid rules from HF Dataset.")
else: logger.warning(f"HF Dataset {HF_RULES_DATASET_REPO} has no 'train' split or 'rule_text' column.")
except Exception as e: logger.error(f"Error loading rules from HF Dataset: {e}", exc_info=True)
_rules_items_list = sorted(list(set(temp_rules_text)))
# Build Rules FAISS Index
_faiss_rules_index = _build_faiss_index(_rules_items_list, lambda r: r)
_initialized = True
logger.info(f"Memory system initialization complete in {time.time() - init_start_time:.2f}s")
def _verify_and_rebuild_if_needed(index, items_list, text_extraction_fn):
"""Self-healing function to ensure FAISS index is synced with the item list."""
if not index or index.ntotal != len(items_list):
logger.warning(
f"FAISS index mismatch detected (Index: {index.ntotal if index else 'None'}, List: {len(items_list)}). "
"Rebuilding index from in-memory cache."
)
return _build_faiss_index(items_list, text_extraction_fn)
return index
# --- Memory Operations (Semantic) ---
def add_memory_entry(user_input: str, metrics: dict, bot_response: str) -> tuple[bool, str]:
global _memory_items_list, _faiss_memory_index
if not _initialized: initialize_memory_system()
if not _embedder or not _faiss_memory_index:
return False, "Memory system not ready for adding entries."
memory_obj = {"user_input": user_input, "metrics": metrics, "bot_response": bot_response, "timestamp": datetime.utcnow().isoformat()}
memory_json_str = json.dumps(memory_obj)
text_to_embed = f"User: {user_input}\nAI: {bot_response}\nTakeaway: {metrics.get('takeaway', 'N/A')}"
try:
embedding = _embedder.encode([text_to_embed], convert_to_tensor=False)
embedding_np = np.array(embedding, dtype=np.float32)
_faiss_memory_index.add(embedding_np)
_memory_items_list.append(memory_json_str)
if STORAGE_BACKEND == "SQLITE":
with _get_sqlite_connection() as conn:
conn.execute("INSERT INTO memories (memory_json) VALUES (?)", (memory_json_str,)); conn.commit()
elif STORAGE_BACKEND == "HF_DATASET":
Dataset.from_dict({"memory_json": list(_memory_items_list)}).push_to_hub(HF_MEMORY_DATASET_REPO, token=HF_TOKEN, private=True)
logger.info(f"Added memory. Cache size: {len(_memory_items_list)}, FAISS size: {_faiss_memory_index.ntotal}")
return True, "Memory added successfully."
except Exception as e:
logger.error(f"Error adding memory entry: {e}", exc_info=True)
return False, f"Error adding memory: {e}"
def retrieve_memories_semantic(query: str, k: int = 3) -> list[dict]:
global _faiss_memory_index
if not _initialized: initialize_memory_system()
# Self-healing: Verify index is synced with cache, rebuild if not.
_faiss_memory_index = _verify_and_rebuild_if_needed(
_faiss_memory_index, _memory_items_list,
lambda m: f"User: {json.loads(m).get('user_input', '')}\nAI: {json.loads(m).get('bot_response', '')}\nTakeaway: {json.loads(m).get('metrics', {}).get('takeaway', 'N/A')}"
)
if not _faiss_memory_index or _faiss_memory_index.ntotal == 0:
logger.debug("Cannot retrieve memories: index is empty.")
return []
try:
query_embedding = _embedder.encode([query], convert_to_tensor=False)
query_embedding_np = np.array(query_embedding, dtype=np.float32)
distances, indices = _faiss_memory_index.search(query_embedding_np, min(k, _faiss_memory_index.ntotal))
results = [json.loads(_memory_items_list[i]) for i in indices[0] if 0 <= i < len(_memory_items_list)]
logger.info(f"Retrieved {len(results)} memories for query: '{query[:50]}...'")
return results
except Exception as e:
logger.error(f"Error retrieving memories semantically: {e}", exc_info=True)
return []
# --- Rule (Insight) Operations (Semantic) ---
def add_rule_entry(rule_text: str) -> tuple[bool, str]:
global _rules_items_list, _faiss_rules_index
if not _initialized: initialize_memory_system()
rule_text = rule_text.strip()
if not rule_text or "duplicate" == rule_text or rule_text in _rules_items_list:
return False, "duplicate or invalid"
if not re.match(r"\[(CORE_RULE|RESPONSE_PRINCIPLE|BEHAVIORAL_ADJUSTMENT|GENERAL_LEARNING)\|([\d\.]+?)\]", rule_text, re.I):
return False, "Invalid rule format."
try:
embedding = _embedder.encode([rule_text], convert_to_tensor=False)
embedding_np = np.array(embedding, dtype=np.float32)
_faiss_rules_index.add(embedding_np)
_rules_items_list.append(rule_text)
_rules_items_list.sort()
if STORAGE_BACKEND == "SQLITE":
with _get_sqlite_connection() as conn:
conn.execute("INSERT OR IGNORE INTO rules (rule_text) VALUES (?)", (rule_text,)); conn.commit()
elif STORAGE_BACKEND == "HF_DATASET":
Dataset.from_dict({"rule_text": list(_rules_items_list)}).push_to_hub(HF_RULES_DATASET_REPO, token=HF_TOKEN, private=True)
return True, "Rule added successfully."
except Exception as e:
logger.error(f"Error adding rule entry: {e}", exc_info=True)
return False, f"Error adding rule: {e}"
def retrieve_rules_semantic(query: str, k: int = 5) -> list[str]:
global _faiss_rules_index
if not _initialized: initialize_memory_system()
_faiss_rules_index = _verify_and_rebuild_if_needed(_faiss_rules_index, _rules_items_list, lambda r: r)
if not _faiss_rules_index or _faiss_rules_index.ntotal == 0: return []
try:
query_embedding = _embedder.encode([query], convert_to_tensor=False)
query_embedding_np = np.array(query_embedding, dtype=np.float32)
distances, indices = _faiss_rules_index.search(query_embedding_np, min(k, _faiss_rules_index.ntotal))
return [_rules_items_list[i] for i in indices[0] if 0 <= i < len(_rules_items_list)]
except Exception as e:
logger.error(f"Error retrieving rules semantically: {e}", exc_info=True)
return []
def remove_rule_entry(rule_text_to_delete: str) -> bool:
global _rules_items_list, _faiss_rules_index
if not _initialized: initialize_memory_system()
rule_text_to_delete = rule_text_to_delete.strip()
if rule_text_to_delete not in _rules_items_list: return False
try:
_rules_items_list.remove(rule_text_to_delete)
_faiss_rules_index = _build_faiss_index(_rules_items_list, lambda r: r)
if STORAGE_BACKEND == "SQLITE":
with _get_sqlite_connection() as conn:
conn.execute("DELETE FROM rules WHERE rule_text = ?", (rule_text_to_delete,)); conn.commit()
elif STORAGE_BACKEND == "HF_DATASET":
Dataset.from_dict({"rule_text": list(_rules_items_list)}).push_to_hub(HF_RULES_DATASET_REPO, token=HF_TOKEN, private=True)
return True
except Exception as e:
logger.error(f"Error removing rule entry: {e}", exc_info=True)
return False
# --- Utility functions to get all data (for UI display, etc.) ---
def get_all_rules_cached() -> list[str]:
if not _initialized: initialize_memory_system()
return list(_rules_items_list)
def get_all_memories_cached() -> list[dict]:
if not _initialized: initialize_memory_system()
return [json.loads(m) for m in _memory_items_list if m]
def clear_all_memory_data_backend() -> bool:
global _memory_items_list, _faiss_memory_index
if not _initialized: initialize_memory_system()
_memory_items_list = []
if _faiss_memory_index: _faiss_memory_index.reset()
try:
if STORAGE_BACKEND == "SQLITE":
with _get_sqlite_connection() as conn: conn.execute("DELETE FROM memories"); conn.commit()
elif STORAGE_BACKEND == "HF_DATASET":
Dataset.from_dict({"memory_json": []}).push_to_hub(HF_MEMORY_DATASET_REPO, token=HF_TOKEN, private=True)
logger.info("All memories cleared.")
return True
except Exception as e:
logger.error(f"Error clearing all memory data: {e}"); return False
def clear_all_rules_data_backend() -> bool:
global _rules_items_list, _faiss_rules_index
if not _initialized: initialize_memory_system()
_rules_items_list = []
if _faiss_rules_index: _faiss_rules_index.reset()
try:
if STORAGE_BACKEND == "SQLITE":
with _get_sqlite_connection() as conn: conn.execute("DELETE FROM rules"); conn.commit()
elif STORAGE_BACKEND == "HF_DATASET":
Dataset.from_dict({"rule_text": []}).push_to_hub(HF_RULES_DATASET_REPO, token=HF_TOKEN, private=True)
logger.info("All rules cleared.")
return True
except Exception as e:
logger.error(f"Error clearing all rules data: {e}"); return False
FAISS_MEMORY_PATH = os.path.join(os.getenv("FAISS_STORAGE_PATH", "app_data/faiss_indices"), "memory_index.faiss")
FAISS_RULES_PATH = os.path.join(os.getenv("FAISS_STORAGE_PATH", "app_data/faiss_indices"), "rules_index.faiss")
def save_faiss_indices_to_disk():
if not _initialized or not faiss: return
faiss_dir = os.path.dirname(FAISS_MEMORY_PATH)
if not os.path.exists(faiss_dir): os.makedirs(faiss_dir, exist_ok=True)
if _faiss_memory_index and _faiss_memory_index.ntotal > 0:
faiss.write_index(_faiss_memory_index, FAISS_MEMORY_PATH)
if _faiss_rules_index and _faiss_rules_index.ntotal > 0:
faiss.write_index(_faiss_rules_index, FAISS_RULES_PATH)
def load_faiss_indices_from_disk():
global _faiss_memory_index, _faiss_rules_index
if not _initialized or not faiss: return
if os.path.exists(FAISS_MEMORY_PATH):
_faiss_memory_index = faiss.read_index(FAISS_MEMORY_PATH)
if os.path.exists(FAISS_RULES_PATH):
_faiss_rules_index = faiss.read_index(FAISS_RULES_PATH)