rayanubhav
fix bug
2581e0d
import os
import random
from datetime import datetime, timedelta
from flask import Flask, request, jsonify, make_response
from flask_cors import CORS
from flask_bcrypt import Bcrypt
from flask_jwt_extended import create_access_token, jwt_required, get_jwt_identity, JWTManager
import numpy as np
import tensorflow as tf
import joblib
from transformers import DistilBertForSequenceClassification, DistilBertTokenizer
from pymongo import MongoClient
from bson import ObjectId
import torch
import logging
import requests
import google.generativeai as genai
from dotenv import load_dotenv
load_dotenv()
# --- App Initialization ---
app = Flask(__name__)
# The new, more explicit configuration
CORS(app, resources={
r"/api/*": {
"origins": "*", # Allow all origins
"methods": ["GET", "POST", "PUT", "DELETE", "OPTIONS"], # Allow these methods
"headers": ["Content-Type", "Authorization"] # Allow these headers
}
})
@app.after_request
def add_cors_headers(response):
response.headers['Access-Control-Allow-Origin'] = '*'
response.headers['Access-Control-Allow-Headers'] = 'Content-Type,Authorization'
response.headers['Access-Control-Allow-Methods'] = 'GET,PUT,POST,DELETE,OPTIONS'
return response
# Allow requests from your React frontend
# GENERATE GEMINI RESPONSES --- Add this right after your imports and "load_dotenv()" ---
# --- Configuration ---
# It's crucial to set a secret key for JWT.
# In production, use a long, random string stored in an environment variable.
app.config["JWT_SECRET_KEY"] = os.environ.get("JWT_SECRET_KEY")
app.config["JWT_ACCESS_TOKEN_EXPIRES"] = timedelta(hours=24)
bcrypt = Bcrypt(app)
jwt = JWTManager(app)
# --- Logging Setup ---
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
try:
GEMINI_API_KEY = os.environ.get("GEMINI_API_KEY")
genai.configure(api_key=GEMINI_API_KEY)
logger.info("βœ… Gemini API configured successfully.")
except Exception as e:
logger.error(f"❌ Error configuring Gemini API: {e}")
GEMINI_API_KEY = None
def generate_gemini_response(emotion, confidence, user_message, chat_history): # Add chat_history
"""
Generates a supportive response from Gemini based on context.
"""
if not GEMINI_API_KEY:
return "I'm currently unable to process this request. Please try again later."
system_prompt = f"""
You are 'MindWell', a compassionate and supportive AI mental health companion.
**Your Strict Rules:**
1. NEVER claim to be a human, a doctor, or a licensed therapist.
2. NEVER diagnose any condition.
3. Keep responses concise and gentle (1-3 sentences).
4. Provide simple, actionable coping strategies or reflective questions.
5. If the user's message implies crisis, your ONLY response is: "CRISIS_RESPONSE"
---
**PREVIOUS CONVERSATION HISTORY (FOR CONTEXT):**
{chat_history}
---
**CURRENT INTERACTION:**
- User's Detected Emotion (from this message): {emotion}
- Confidence in Detection: {confidence:.2f}%
- User's New Message: "{user_message}"
Based on the previous history and the current interaction, generate a supportive and relevant response. If the history mentions a high stress score, acknowledge it gently.
"""
# ... the rest of the function is the same
try:
model = genai.GenerativeModel('gemini-1.5-flash-latest') # A great, free-tier model
response = model.generate_content(system_prompt)
return response.text
except Exception as e:
logger.error(f"Error calling Gemini API: {e}")
return "I'm having a little trouble thinking of a response right now. Could you try rephrasing?"
# ===================================================================================
# --- MODEL LOADING ---
# ===================================================================================
# --- 1. Load Stress Prediction Model & Scaler ---
try:
stress_model = tf.keras.models.load_model("stress_model.h5")
stress_scaler = joblib.load("scaler.pkl")
logger.info("βœ… Stress prediction model and scaler loaded successfully.")
except Exception as e:
logger.error(f"❌ Error loading stress model or scaler: {e}")
stress_model = None
stress_scaler = None
# --- 2. Load Chatbot Emotion Model & Tokenizer ---
try:
# Ensure you have the fine-tuned model files in a directory named 'fine_tuned_model'
chatbot_model = DistilBertForSequenceClassification.from_pretrained("./fine_tuned_model")
chatbot_tokenizer = DistilBertTokenizer.from_pretrained("./fine_tuned_model")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
chatbot_model.to(device)
chatbot_model.eval()
logger.info(f"βœ… Chatbot model loaded successfully on {device}.")
except Exception as e:
logger.error(f"❌ Error loading chatbot model: {e}")
chatbot_model = None
chatbot_tokenizer = None
# --- 3. Load Facial Emotion Detection Model ---
try:
emotion_model_filename = 'emotion_classifier_rf_TUNED.joblib'
facial_emotion_model = joblib.load(emotion_model_filename)
# This dictionary maps the model's integer output to a human-readable emotion
facial_emotion_labels = {0: 'Angry', 1: 'Disgust', 2: 'Fear', 3: 'Happy', 4: 'Sad', 5: 'Surprise', 6: 'Neutral'}
logger.info(f"βœ… Facial emotion detection model loaded from: {emotion_model_filename}")
except Exception as e:
logger.error(f"❌ Error loading facial emotion model: {e}")
facial_emotion_model = None
# --- MongoDB Setup for Chat Logs ---
try:
MONGO_URI = os.environ.get("MONGO_URI")
client = MongoClient(MONGO_URI)
db = client["mindcare_db"] # Using a new database name for clarity
users_collection = db["users"]
stress_logs_collection = db["stress_logs"]
chat_logs_collection = db["chat_logs"] # You already had this
cbt_records_collection = db["cbt_records"]
meditations_collection = db["meditations"]
logger.info("βœ… MongoDB connection established.")
except Exception as e:
logger.error(f"❌ Error connecting to MongoDB: {e}")
users_collection = None
cbt_records_collection = None
# --- Chatbot Helper Data ---
# This label map is for the text-based emotion detection in the chatbot
text_emotion_label_map = {0: "positive", 1: "negative"}
helplines = {
"US": "1-800-273-8255 (National Suicide Prevention Lifeline)",
"India": "9152987821 (iCall, India), +91-22-25521111 (Samaritans Mumbai)",
"Global": "Find local helplines at www.iasp.info/resources/Crisis_Centres/"
}
suggestion_library = {
"low": {
"Breathing": {"title": "Mindful Sigh", "description": "Inhale deeply through your nose and exhale with an audible sigh. A simple way to release tension and reset.", "link": "https://www.youtube.com/watch?v=r6Vynwn_q-U"},
"Yoga": {"title": "Cat-Cow Stretch", "description": "A gentle, accessible stretch to increase spinal flexibility and calm the mind. Great for any time of day.", "link": "https://www.youtube.com/watch?v=LIVJZZyZ2qM"},
"Music": {"title": "Lofi Hip Hop Radio", "description": "Relaxing beats perfect for studying, relaxing, or focusing without distraction.", "link": "https://www.youtube.com/watch?v=lTRiuFIWV54"}
},
"medium": {
"Breathing": {"title": "Box Breathing", "description": "Inhale for 4s, hold for 4s, exhale for 4s, hold for 4s. A powerful technique to calm the nervous system.", "link": "https://www.youtube.com/watch?v=tEmt1Znux58"},
"Yoga": {"title": "Child's Pose", "description": "A resting pose that can help relieve stress and fatigue. It gently stretches your back, hips, and ankles.", "link": "https://www.youtube.com/watch?v=kH12QrSGedM"},
"Music": {"title": "Calm Piano Music", "description": "Beautiful, light piano music that can help reduce anxiety and promote a sense of peace.", "link": "https://www.youtube.com/watch?v=5OIeIaAhQOg"}
},
"high": {
"Breathing": {"title": "4-7-8 Breathing", "description": "Inhale for 4s, hold your breath for 7s, and exhale slowly for 8s. Excellent for reducing anxiety quickly.", "link": "https://www.youtube.com/watch?v=LiUnFJ8P4gM"},
"Yoga": {"title": "Legs-Up-The-Wall Pose", "description": "A restorative pose that helps calm the nervous system and reduce stress and anxiety.", "link": "https://www.youtube.com/watch?v=do_1LisFah0"},
"Music": {"title": "Weightless by Marconi Union", "description": "Specifically designed in collaboration with sound therapists to reduce anxiety, heart rate, and blood pressure.", "link": "https://www.youtube.com/watch?v=UfcAVejslrU"}
}
}
@app.route("/api/auth/register", methods=["POST"])
def register():
data = request.get_json()
name = data.get('name')
email = data.get('email')
password = data.get('password')
if not name or not email or not password:
return jsonify({"msg": "Missing name, email, or password"}), 400
if users_collection.find_one({"email": email}):
return jsonify({"msg": "Email already exists"}), 409
hashed_password = bcrypt.generate_password_hash(password).decode('utf-8')
user_id = users_collection.insert_one({
"name": name,
"email": email,
"password": hashed_password,
"created_at": datetime.utcnow()
}).inserted_id
access_token = create_access_token(identity=str(user_id))
logger.info(f"New user registered: {email}")
return jsonify(access_token=access_token, user={"id": str(user_id), "name": name, "email": email}), 201
@app.route("/api/auth/login", methods=["POST"])
def login():
data = request.get_json()
email = data.get('email')
password = data.get('password')
if not email or not password:
return jsonify({"msg": "Missing email or password"}), 400
user = users_collection.find_one({"email": email})
if user and bcrypt.check_password_hash(user['password'], password):
access_token = create_access_token(identity=str(user['_id']))
logger.info(f"User logged in: {email}")
return jsonify(access_token=access_token, user={"id": str(user['_id']), "name": user['name'], "email": user['email']})
return jsonify({"msg": "Invalid credentials"}), 401
# ===================================================================================
# --- API ROUTES ---
# ===================================================================================
@app.route("/api/predict-stress", methods=["POST"])
@jwt_required()
def predict_stress_route():
current_user_id = get_jwt_identity()
if not stress_model or not stress_scaler:
return jsonify({"error": "Stress model is not available."}), 500
data = request.json
features = np.array([[float(data["heart_rate"]), float(data["steps"]), float(data["sleep"]), float(data["age"])]])
scaled_features = stress_scaler.transform(features)
prediction = stress_model.predict(scaled_features)
stress_level = int(np.round(prediction[0][0]))
stress_level = max(0, min(10, stress_level))
stress_logs_collection.insert_one({
"user_id": ObjectId(current_user_id),
"stress_level": stress_level,
"inputs": data,
"timestamp": datetime.utcnow()
})
# --- UPDATED RESPONSE ---
category = 'low'
if 4 <= stress_level <= 6:
category = 'medium'
elif stress_level > 6:
category = 'high'
suggestions = [
{"type": "Breathing", **suggestion_library[category]["Breathing"]},
{"type": "Yoga", **suggestion_library[category]["Yoga"]},
{"type": "Music", **suggestion_library[category]["Music"]},
]
logger.info(f"Stress prediction for user {current_user_id} saved. Level: {stress_level}")
return jsonify({
"stress_level": stress_level,
"suggestions": suggestions
})
# ===================================================================================
# --- NEW: CHAT HISTORY ROUTE ---
# ===================================================================================
@app.route("/api/chat/history", methods=["GET"])
@jwt_required()
def get_chat_history():
"""
Fetches the last 20 messages for the logged-in user.
"""
try:
current_user_id = get_jwt_identity()
# 1. Query the database for the user's chat logs
# - Filter by the current user's ID
# - Sort by timestamp in descending order to get the newest first
# - Limit to 20 documents (which is 10 user/AI message pairs)
history_cursor = chat_logs_collection.find(
{"user_id": ObjectId(current_user_id)}
).sort("timestamp", -1).limit(20)
# 2. Format the documents for the frontend
history_list = []
for log in history_cursor:
history_list.append({
"id": str(log["_id"]), # Convert ObjectId to string
"user_message": log.get("user_message"),
"ai_response": log.get("ai_response"),
"timestamp": log["timestamp"].isoformat() # Use ISO format for consistency
})
# 3. Reverse the list so it's in chronological order (oldest first)
# This makes it easier to display in the chat window.
history_list.reverse()
return jsonify(history_list), 200
except Exception as e:
logger.error(f"Error fetching chat history for user {current_user_id}: {e}")
return jsonify({"error": "An internal server error occurred while fetching chat history."}), 500
# --- NEW ROUTE: To add context to the chat history ---
@app.route("/api/chat/context", methods=["POST"])
@jwt_required()
def add_chat_context():
current_user_id = get_jwt_identity()
data = request.get_json()
event_type = data.get("event_type")
event_data = data.get("data", {})
system_message = ""
if event_type == "STRESS_DETECTED" and event_data.get("level"):
system_message = f"System Note: The user just recorded a stress level of {event_data['level']}/10."
elif event_type == "EMOTION_DETECTED" and event_data.get("emotion"):
system_message = f"System Note: The user's emotion was just detected as {event_data['emotion']} with {event_data.get('confidence', 'N/A')}% confidence."
if system_message:
chat_logs_collection.insert_one({
"user_id": ObjectId(current_user_id),
"role": "system", # Special role for context
"content": system_message,
"timestamp": datetime.utcnow()
})
return jsonify({"msg": "Context added successfully"}), 200
return jsonify({"msg": "Invalid event"}), 400
# In app.py, replace your entire chat_route function with this one
@app.route("/api/chat", methods=["POST"])
@jwt_required()
def chat_route():
current_user_id = get_jwt_identity()
data = request.get_json()
message_text = data.get("message")
if not message_text:
return jsonify({"msg": "Message is required"}), 400
# --- 1. Crisis Check ---
crisis_keywords = ['suicide', 'kill myself', 'self-harm', 'want to die', 'end my life']
if any(keyword in message_text.lower() for keyword in crisis_keywords):
helpline_info = helplines.get("India", helplines.get("Global"))
response_text = f"It sounds like you are in significant distress. Please reach out for immediate help. You can connect with someone at: {helpline_info}. Help is available and you are not alone."
chat_logs_collection.insert_one({
"user_id": ObjectId(current_user_id),
"user_message": message_text,
"ai_response": "CRISIS_INTERVENTION_TRIGGERED: " + response_text,
"detected_emotion": "crisis",
"timestamp": datetime.utcnow()
})
return jsonify({"response": response_text}), 200
# --- 2. Build Context from History ---
history_cursor = chat_logs_collection.find(
{"user_id": ObjectId(current_user_id)}
).sort("timestamp", -1).limit(10)
chat_history_for_prompt = ""
for log in reversed(list(history_cursor)):
if log.get("role") == "system":
chat_history_for_prompt += f"{log.get('content')}\n"
# Make sure to check for the old format too for backward compatibility
elif log.get("user_message") and log.get("ai_response"):
chat_history_for_prompt += f"User: {log.get('user_message')}\n"
chat_history_for_prompt += f"AI: {log.get('ai_response')}\n"
# --- 3. Get Sentiment of the NEW message ---
inputs = chatbot_tokenizer(message_text, return_tensors="pt", truncation=True, padding=True).to(device)
with torch.no_grad():
outputs = chatbot_model(**inputs)
logits = outputs.logits
probabilities = torch.softmax(logits, dim=1).cpu().numpy()[0]
predicted_class_id = np.argmax(probabilities)
confidence = np.max(probabilities) * 100
emotion = text_emotion_label_map.get(predicted_class_id, "unknown")
# --- 4. Call Gemini with FULL context ---
response_text = generate_gemini_response(emotion, confidence, message_text, chat_history_for_prompt)
# --- 5. Log and Respond ---
if "CRISIS_RESPONSE" in response_text:
helpline_info = helplines.get("India", helplines.get("Global"))
response_text = f"It sounds like you are going through a very difficult time. It's important to talk to someone who can help. Please consider reaching out to: {helpline_info}."
chat_logs_collection.insert_one({
"user_id": ObjectId(current_user_id),
"user_message": message_text,
"ai_response": response_text,
"detected_emotion": emotion,
"confidence": f"{confidence:.2f}%",
"timestamp": datetime.utcnow()
})
return jsonify({"response": response_text})
@app.route("/api/predict-emotion", methods=["POST"])
@jwt_required()
def predict_emotion_route():
if not facial_emotion_model:
return jsonify({"error": "Facial emotion model is not available. Check server logs."}), 500
try:
data = request.json
# The frontend will calculate these features and send them in the request body
feature_vector = np.array([[
data['avg_ear'],
data['mar'],
data['eyebrow_dist'],
data['jaw_drop']
]])
predicted_class = facial_emotion_model.predict(feature_vector)[0]
emotion = facial_emotion_labels[predicted_class]
prediction_proba = facial_emotion_model.predict_proba(feature_vector)[0]
confidence = round(max(prediction_proba) * 100, 2)
logger.info(f"Facial emotion prediction: {emotion} ({confidence}%)")
return jsonify({"emotion": emotion, "confidence": confidence})
except Exception as e:
logger.error(f"Error in /api/predict-emotion: {e}")
return jsonify({"error": "An error occurred during emotion prediction."}), 400
# ===================================================================================
# --- NEW: THERAPIST FINDER ROUTE ---
# ===================================================================================
@app.route("/api/therapists", methods=["GET"])
@jwt_required()
def find_therapists_route():
lat = request.args.get("lat")
lng = request.args.get("lng")
query = request.args.get("query", "mental health therapist")
if not lat or not lng:
return jsonify({"error": "Latitude and longitude are required"}), 400
fallback_locations = [
{"name": "Mumbai", "lat": 19.076, "lng": 72.8777},
{"name": "Delhi", "lat": 28.6139, "lng": 77.209},
{"name": "Bangalore", "lat": 12.9716, "lng": 77.5946},
]
def fetch_therapists(fs_lat, fs_lng, fs_query):
api_url = "https://places-api.foursquare.com/places/search"
api_key = os.environ.get("FOURSQUARE_SERVICE_KEY")
headers = {
"Authorization": f"Bearer {api_key}" if api_key else "",
"Accept": "application/json",
"X-Places-API-Version": "2025-06-17",
}
params = {
"ll": f"{fs_lat},{fs_lng}",
"query": fs_query,
"radius": 10000,
"limit": 20,
}
try:
response = requests.get(api_url, headers=headers, params=params)
response.raise_for_status()
data = response.json()
results = []
for place in data.get("results", []):
lat_val = (
place.get("geocodes", {}).get("main", {}).get("latitude")
or place.get("latitude")
)
lng_val = (
place.get("geocodes", {}).get("main", {}).get("longitude")
or place.get("longitude")
)
if not lat_val or not lng_val:
continue
results.append({
"id": place.get("fsq_id") or place.get("fsq_place_id"),
"name": place.get("name"),
"address": ", ".join(
filter(
None,
[
place.get("location", {}).get("address"),
place.get("location", {}).get("locality"),
place.get("location", {}).get("region"),
],
)
) or "Address not available",
"latitude": lat_val,
"longitude": lng_val,
"phone": place.get("tel"),
})
return results
except requests.exceptions.RequestException as e:
return []
# Try user location
results = fetch_therapists(lat, lng, query)
# If no results, try fallback cities
if not results:
for loc in fallback_locations:
results = fetch_therapists(loc["lat"], loc["lng"], query)
if results:
break
return jsonify(results)
# ===================================================================================
# --- NEW: DASHBOARD HISTORY ROUTE ---
# ===================================================================================
@app.route("/api/history", methods=["GET"])
@jwt_required()
def get_history():
current_user_id = get_jwt_identity()
try:
seven_days_ago = datetime.utcnow() - timedelta(days=7)
stress_logs_cursor = stress_logs_collection.find({
"user_id": ObjectId(current_user_id),
"timestamp": {"$gte": seven_days_ago}
}).sort("timestamp", 1)
stress_logs = list(stress_logs_cursor)
# --- NEW: Aggregate data for Pie Chart ---
stress_summary = {"Low": 0, "Medium": 0, "High": 0}
for log in stress_logs:
level = log['stress_level']
if level <= 3:
stress_summary["Low"] += 1
elif 4 <= level <= 6:
stress_summary["Medium"] += 1
else:
stress_summary["High"] += 1
pie_chart_data = [{"name": key, "value": value} for key, value in stress_summary.items()]
# (Existing history logic remains)
dates_last_7_days = [(seven_days_ago + timedelta(days=i)).strftime("%b %d") for i in range(8)]
stress_map = {date: None for date in dates_last_7_days}
for log in stress_logs:
date_str = log['timestamp'].strftime("%b %d")
stress_map[date_str] = log['stress_level']
stress_history = [{"date": date, "level": level} for date, level in stress_map.items()]
last_stress_score = stress_logs[-1]['stress_level'] if stress_logs else "N/A"
# --- 3. Get Last Chat Insight ---
last_chat_log = chat_logs_collection.find_one(
{"user_id": ObjectId(current_user_id), "ai_response": {"$exists": True}},
sort=[("timestamp", -1)]
)
# 2. Use the safe .get() method to prevent crashes.
last_chat_insight = last_chat_log.get('ai_response') if last_chat_log else "No recent chats."
# --- 4. Combine and Return Data ---
dashboard_data = {
"stress_history": stress_history,
"stress_summary_pie": pie_chart_data, # NEW
"last_stress_score": last_stress_score,
"last_chat_insight": last_chat_insight
}
return jsonify(dashboard_data), 200
except Exception as e:
logger.error(f"Error fetching history for user {current_user_id}: {e}")
return jsonify({"error": "An internal server error occurred."}), 500
@app.route("/api/resources", methods=["GET"])
@jwt_required()
def get_resources():
# This data is hardcoded for easy management, but could be moved to a database.
resources_data = [
{
"category": "Immediate Help & Helplines",
"items": [
{
"title": "iCall Psychosocial Helpline (India)",
"description": "Free telephone and email-based counseling services provided by trained mental health professionals.",
"link": "https://icallhelpline.org/"
},
{
"title": "Samaritans Mumbai (India)",
"description": "Provides emotional support to anyone in distress, struggling to cope, or at risk of suicide.",
"link": "http://www.samaritansmumbai.com/"
},
{
"title": "National Suicide Prevention Lifeline (US)",
"description": "A national network of local crisis centers that provides free and confidential emotional support.",
"link": "https://suicidepreventionlifeline.org/"
}
]
},
{
"category": "Guided Meditations & Mindfulness",
"items": [
{
"title": "10-Minute Meditation for Beginners",
"description": "A simple, guided meditation to help you start your mindfulness practice.",
"link": "https://www.youtube.com/watch?v=O-6f5wQXSu8"
},
{
"title": "Mindful Breathing Exercise",
"description": "A short exercise focusing on the breath to calm anxiety and center your thoughts.",
"link": "https://youtu.be/watch?v=r6Vynwn_q-U"
}
]
},
{
"category": "Understanding Anxiety",
"items": [
{
"title": "What Is Anxiety?",
"description": "An informative article from the American Psychiatric Association explaining anxiety disorders.",
"link": "https://www.psychiatry.org/patients-families/anxiety-disorders/what-are-anxiety-disorders"
},
{
"title": "How to Cope with Anxiety",
"description": "Practical tips and strategies for managing anxiety symptoms in your daily life from Mind UK.",
"link": "https://www.mind.org.uk/information-support/types-of-mental-health-problems/anxiety-and-panic-attacks/self-care/"
}
]
}
]
return jsonify(resources_data), 200
@app.route("/api/cbt-records", methods=["POST"])
@jwt_required()
def add_cbt_record():
"""Saves a new CBT Thought Record to the database."""
current_user_id = get_jwt_identity()
data = request.get_json()
# Basic validation
required_fields = ['situation', 'automatic_thought', 'emotions', 'alternative_thought']
if not all(field in data for field in required_fields):
return jsonify({"msg": "Missing required fields"}), 400
record = {
"user_id": ObjectId(current_user_id),
"situation": data.get("situation"),
"automatic_thought": data.get("automatic_thought"),
"emotions": data.get("emotions"),
"alternative_thought": data.get("alternative_thought"),
"timestamp": datetime.utcnow()
}
cbt_records_collection.insert_one(record)
return jsonify({"msg": "Record saved successfully"}), 201
@app.route("/api/cbt-records", methods=["GET"])
@jwt_required()
def get_cbt_records():
"""Fetches all CBT Thought Records for the logged-in user."""
current_user_id = get_jwt_identity()
records_cursor = cbt_records_collection.find(
{"user_id": ObjectId(current_user_id)}
).sort("timestamp", -1) # Sort by newest first
records_list = []
for record in records_cursor:
record["_id"] = str(record["_id"])
record["user_id"] = str(record["user_id"])
records_list.append(record)
return jsonify(records_list), 200
# --- ADD THIS NEW ROUTE FOR MEDITATIONS ---
@app.route("/api/meditations", methods=["GET"])
@jwt_required()
def get_meditations():
try:
if meditations_collection is None:
return jsonify({"error": "Database not connected"}), 500
all_meditations = list(meditations_collection.find({}))
# Convert the MongoDB ObjectId to a string if you are not using custom string _id's
for med in all_meditations:
if '_id' in med and not isinstance(med['_id'], str):
med['_id'] = str(med['_id'])
return jsonify(all_meditations)
except Exception as e:
logger.error(f"Error fetching meditations: {e}")
return jsonify({"error": "Could not fetch meditations"}), 500
if __name__ == "__main__":
app.run(host='0.0.0.0', port=7860)