agwefgw / services /sd /webuiapi.py
chaowenguo's picture
Upload 129 files
5690e11 verified
# Copyright © [2024] 程序那些事
#
# All rights reserved. This software and associated documentation files (the "Software") are provided for personal and educational use only. Commercial use of the Software is strictly prohibited unless explicit permission is obtained from the author.
#
# Permission is hereby granted to any person to use, copy, and modify the Software for non-commercial purposes, provided that the following conditions are met:
#
# 1. The original copyright notice and this permission notice must be included in all copies or substantial portions of the Software.
# 2. Modifications, if any, must retain the original copyright information and must not imply that the modified version is an official version of the Software.
# 3. Any distribution of the Software or its modifications must retain the original copyright notice and include this permission notice.
#
# For commercial use, including but not limited to selling, distributing, or using the Software as part of any commercial product or service, you must obtain explicit authorization from the author.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHOR OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
#
# Author: 程序那些事
# email: flydean@163.com
# Website: [www.flydean.com](http://www.flydean.com)
# GitHub: [https://github.com/ddean2009/MoneyPrinterPlus](https://github.com/ddean2009/MoneyPrinterPlus)
#
# All rights reserved.
#
#
import json
import PIL
import requests
import io
import base64
from PIL import Image, PngImagePlugin
from dataclasses import dataclass
from enum import Enum
from typing import List, Dict, Any, Optional, Union, Literal
class Upscaler(str, Enum):
none = "None"
Lanczos = "Lanczos"
Nearest = "Nearest"
LDSR = "LDSR"
BSRGAN = "BSRGAN"
ESRGAN_4x = "R-ESRGAN 4x+"
R_ESRGAN_General_4xV3 = "R-ESRGAN General 4xV3"
ScuNET_GAN = "ScuNET GAN"
ScuNET_PSNR = "ScuNET PSNR"
SwinIR_4x = "SwinIR 4x"
class HiResUpscaler(str, Enum):
none = "None"
Latent = "Latent"
LatentAntialiased = "Latent (antialiased)"
LatentBicubic = "Latent (bicubic)"
LatentBicubicAntialiased = "Latent (bicubic antialiased)"
LatentNearest = "Latent (nearest)"
LatentNearestExact = "Latent (nearest-exact)"
Lanczos = "Lanczos"
Nearest = "Nearest"
ESRGAN_4x = "R-ESRGAN 4x+"
LDSR = "LDSR"
ScuNET_GAN = "ScuNET GAN"
ScuNET_PSNR = "ScuNET PSNR"
SwinIR_4x = "SwinIR 4x"
@dataclass
class WebUIApiResult:
images: list
parameters: dict
info: dict
json: dict
@property
def image(self):
return self.images[0]
class ControlNetUnit:
def __init__(
self,
image: Image = None,
mask: Image = None,
module: str = "none",
model: str = "None",
weight: float = 1.0,
resize_mode: str = "Resize and Fill",
low_vram: bool = False,
processor_res: int = 512,
threshold_a: float = 64,
threshold_b: float = 64,
guidance_start: float = 0.0,
guidance_end: float = 1.0,
control_mode: int = 0,
pixel_perfect: bool = False,
guessmode: int = None, # deprecated: use control_mode
hr_option: str = "Both", # Both, Low res only, High res only
enabled: bool = True,
):
self.image = image
self.mask = mask
self.module = module
self.model = model
self.weight = weight
self.resize_mode = resize_mode
self.low_vram = low_vram
self.processor_res = processor_res
self.threshold_a = threshold_a
self.threshold_b = threshold_b
self.guidance_start = guidance_start
self.guidance_end = guidance_end
self.enabled = enabled
if guessmode:
print(
"ControlNetUnit guessmode is deprecated. Please use control_mode instead."
)
control_mode = guessmode
if control_mode == 0:
self.control_mode = 'Balanced'
elif control_mode == 1:
self.control_mode = 'My prompt is more important'
elif control_mode == 2:
self.control_mode = 'ControlNet is more important'
else:
self.control_mode = control_mode
self.pixel_perfect = pixel_perfect
self.hr_option = hr_option
def to_dict(self):
return {
"image": raw_b64_img(self.image) if self.image else "",
"mask": raw_b64_img(self.mask) if self.mask is not None else None,
"module": self.module,
"model": self.model,
"weight": self.weight,
"resize_mode": self.resize_mode,
"low_vram": self.low_vram,
"processor_res": self.processor_res,
"threshold_a": self.threshold_a,
"threshold_b": self.threshold_b,
"guidance_start": self.guidance_start,
"guidance_end": self.guidance_end,
"control_mode": self.control_mode,
"pixel_perfect": self.pixel_perfect,
"hr_option": self.hr_option,
"enabled": self.enabled,
}
class ADetailer:
def __init__(self,
ad_model: str = "None",
ad_prompt: str = "",
ad_negative_prompt: str = "",
ad_confidence: float = 0.3,
ad_mask_k_largest: float = 0.0,
ad_mask_min_ratio: float = 0.0,
ad_mask_max_ratio: float = 1.0,
ad_dilate_erode: int = 4,
ad_x_offset: int = 0,
ad_y_offset: int = 0,
ad_mask_merge_invert: Literal["None", "Merge", "Merge and Invert"] = "None",
ad_mask_blur: int = 4,
ad_denoising_strength: int = 0.4,
ad_inpaint_only_masked: bool = True,
ad_inpaint_only_masked_padding: int = 32,
ad_use_inpaint_width_height: bool = False,
ad_inpaint_width: int = 512,
ad_inpaint_height: int = 512,
ad_use_steps: bool = False,
ad_steps: int = 28,
ad_use_cfg_scale: bool = False,
ad_cfg_scale: float = 7.0,
# ad_use_sampler: bool = False,
# ad_sampler: str = "None",
ad_use_noise_multiplier: bool = False,
ad_noise_multiplier=1.0,
ad_use_clip_skip: bool = False,
ad_clip_skip: int = 1,
ad_restore_face: bool = False,
ad_controlnet_model: str = "None",
ad_controlnet_module: str = "None",
ad_controlnet_weight: float = 1.0,
ad_controlnet_guidance_start: float = 0.0,
ad_controlnet_guidance_end: float = 1.0,
):
self.ad_model = ad_model
self.ad_prompt = ad_prompt
self.ad_negative_prompt = ad_negative_prompt
self.ad_confidence = ad_confidence
self.ad_mask_k_largest = ad_mask_k_largest
self.ad_mask_min_ratio = ad_mask_min_ratio
self.ad_mask_max_ratio = ad_mask_max_ratio
self.ad_dilate_erode = ad_dilate_erode
self.ad_x_offset = ad_x_offset
self.ad_y_offset = ad_y_offset
self.ad_mask_merge_invert = ad_mask_merge_invert
self.ad_mask_blur = ad_mask_blur
self.ad_denoising_strength = ad_denoising_strength
self.ad_inpaint_only_masked = ad_inpaint_only_masked
self.ad_inpaint_only_masked_padding = ad_inpaint_only_masked_padding
self.ad_use_inpaint_width_height = ad_use_inpaint_width_height
self.ad_inpaint_width = ad_inpaint_width
self.ad_inpaint_height = ad_inpaint_height
self.ad_use_steps = ad_use_steps
self.ad_steps = ad_steps
self.ad_use_cfg_scale = ad_use_cfg_scale
self.ad_cfg_scale = ad_cfg_scale
self.ad_use_noise_multiplier = ad_use_noise_multiplier
self.ad_noise_multiplier = ad_noise_multiplier
self.ad_use_clip_skip = ad_use_clip_skip
self.ad_clip_skip = ad_clip_skip
self.ad_restore_face = ad_restore_face
self.ad_controlnet_model = ad_controlnet_model
self.ad_controlnet_module = ad_controlnet_module
self.ad_controlnet_weight = ad_controlnet_weight
self.ad_controlnet_guidance_start = ad_controlnet_guidance_start
self.ad_controlnet_guidance_end = ad_controlnet_guidance_end
def to_dict(self):
return {
"ad_model": self.ad_model,
"ad_prompt": self.ad_prompt,
"ad_negative_prompt": self.ad_negative_prompt,
"ad_confidence": self.ad_confidence,
"ad_mask_k_largest": self.ad_mask_k_largest,
"ad_mask_min_ratio": self.ad_mask_min_ratio,
"ad_mask_max_ratio": self.ad_mask_max_ratio,
"ad_dilate_erode": self.ad_dilate_erode,
"ad_x_offset": self.ad_x_offset,
"ad_y_offset": self.ad_y_offset,
"ad_mask_merge_invert": self.ad_mask_merge_invert,
"ad_mask_blur": self.ad_mask_blur,
"ad_denoising_strength": self.ad_denoising_strength,
"ad_inpaint_only_masked": self.ad_inpaint_only_masked,
"ad_inpaint_only_masked_padding": self.ad_inpaint_only_masked_padding,
"ad_use_inpaint_width_height": self.ad_use_inpaint_width_height,
"ad_inpaint_width": self.ad_inpaint_width,
"ad_inpaint_height": self.ad_inpaint_height,
"ad_use_steps": self.ad_use_steps,
"ad_steps": self.ad_steps,
"ad_use_cfg_scale": self.ad_use_cfg_scale,
"ad_cfg_scale": self.ad_cfg_scale,
"ad_use_noise_multiplier": self.ad_use_noise_multiplier,
"ad_noise_multiplier": self.ad_noise_multiplier,
"ad_use_clip_skip": self.ad_use_clip_skip,
"ad_clip_skip": self.ad_clip_skip,
"ad_restore_face": self.ad_restore_face,
"ad_controlnet_model": self.ad_controlnet_model,
"ad_controlnet_module": self.ad_controlnet_module,
"ad_controlnet_weight": self.ad_controlnet_weight,
"ad_controlnet_guidance_start": self.ad_controlnet_guidance_start,
"ad_controlnet_guidance_end": self.ad_controlnet_guidance_end,
}
class AnimateDiff:
def __init__(self,
model="mm_sd15_v3.safetensors",
enable=True,
video_length=0,
fps=8,
loop_number=0, # Display loop number
closed_loop='R-P', # Closed loop, 'N' | 'R-P' | 'R+P' | 'A'
batch_size=16,
stride=1,
overlap=-1,
format=['GIF'], # 'GIF' | 'MP4' | 'PNG' | 'WEBP' | 'WEBM' | 'TXT' | 'Frame'
interp='Off', # Frame interpolation, 'Off' | 'FILM'
interp_x=10, # Interp X
video_source=None,
video_path='',
mask_path='',
freeinit_enable=False,
freeinit_filter="butterworth",
freeinit_ds=0.25,
freeinit_dt=0.25,
freeinit_iters=3,
latent_power=1,
latent_scale=32,
last_frame=None,
latent_power_last=1,
latent_scale_last=32,
request_id='',
):
self.model = model
self.enable = enable
self.video_length = video_length
self.fps = fps
self.loop_number = loop_number
self.closed_loop = closed_loop
self.batch_size = batch_size
self.stride = stride
self.overlap = overlap
self.format = format
self.interp = interp
self.interp_x = interp_x
self.video_source = video_source
self.video_path = video_path
self.mask_path = mask_path
self.freeinit_enable = freeinit_enable
self.freeinit_filter = freeinit_filter
self.freeinit_ds = freeinit_ds
self.freeinit_dt = freeinit_dt
self.freeinit_iters = freeinit_iters
self.latent_power = latent_power
self.latent_scale = latent_scale
self.last_frame = last_frame
self.latent_power_last = latent_power_last
self.latent_scale_last = latent_scale_last
self.request_id = request_id
def to_dict(self, is_img2img=False):
infotext = {
"model": self.model,
"enable": self.enable,
"video_length": self.video_length,
"format": self.format,
"fps": self.fps,
"loop_number": self.loop_number,
"closed_loop": self.closed_loop,
"batch_size": self.batch_size,
"stride": self.stride,
"overlap": self.overlap,
"interp": self.interp,
"interp_x": self.interp_x,
"freeinit_enable": self.freeinit_enable,
"freeinit_filter": self.freeinit_filter,
"freeinit_ds": self.freeinit_ds,
"freeinit_dt": self.freeinit_dt,
"freeinit_iters": self.freeinit_iters,
}
if self.request_id:
infotext['request_id'] = self.request_id
if self.last_frame:
infotext['last_frame'] = self.last_frame
if len(self.video_path) > 0:
infotext['video_path'] = self.video_path
if len(self.mask_path) > 0:
infotext['mask_path'] = self.mask_path
if is_img2img:
infotext.update({
"latent_power": self.latent_power,
"latent_scale": self.latent_scale,
"latent_power_last": self.latent_power_last,
"latent_scale_last": self.latent_scale_last,
})
return infotext
class Roop:
def __init__(self, img: PIL.Image,
enable: bool = True,
faces_index: str = "0",
model: str = None,
face_restorer_name: str = "GFPGAN",
face_restorer_visibility: float = 1,
upscaler_name: str = "R-ESRGAN 4x+",
upscaler_scale: float = 1,
upscaler_visibility: float = 1,
swap_in_source: bool = False,
swap_in_generated: bool = True):
self.img = b64_img(img)
self.enable = enable
self.faces_index = faces_index
self.model = model
self.face_restorer_name = face_restorer_name
self.face_restorer_visibility = face_restorer_visibility
self.upscaler_name = upscaler_name
self.upscaler_scale = upscaler_scale
self.upscaler_visibility = upscaler_visibility
self.swap_in_source = swap_in_source
self.swap_in_generated = swap_in_generated
def to_dict(self):
return [
self.img,
self.enable,
self.faces_index,
self.model,
self.face_restorer_name,
self.face_restorer_visibility,
self.upscaler_name,
self.upscaler_scale,
self.upscaler_visibility,
self.swap_in_source,
self.swap_in_generated]
class ReActor:
def __init__(self,
img: PIL.Image, # 0
enable: bool = True, # 1 Enable ReActor
source_faces_index: str = "0", # 2 Comma separated face number(s) from swap-source image
faces_index: str = "0", # 3 Comma separated face number(s) for target image (result)
model: str = 'inswapper_128.onnx', # None, #4 model path
face_restorer_name: str = "CodeFormer", # 4 Restore Face: None; CodeFormer; GFPGAN
face_restorer_visibility: float = 1, # 5 Restore visibility value
restore_first: bool = True, # 7 Restore face -> Upscale
upscaler_name: str = "R-ESRGAN 4x+",
# None, # "R-ESRGAN 4x+", #8 Upscaler (type 'None' if doesn't need), see full list here: http://127.0.0.1:7860/sdapi/v1/script-info -> reactor -> sec.8
upscaler_scale: int = 2, # 9 Upscaler scale value
upscaler_visibility: float = 1,
swap_in_source: bool = False,
swap_in_generated: bool = True,
console_logging_level: int = 1, # 13 Console Log Level (0 - min, 1 - med or 2 - max)
gender_source: int = 0, # 14 Gender Detection (Source) (0 - No, 1 - Female Only, 2 - Male Only)
gender_target: int = 0, # 14 Gender Detection (Target) (0 - No, 1 - Female Only, 2 - Male Only)
save_original: bool = False,
codeFormer_weight: float = 0.5,
source_hash_check: bool = True,
target_hash_check: bool = False,
device: str = "CUDA", # or CPU
mask_face: bool = True,
select_source: int = 0, # IMPORTANT. MUST BE 0 or faceswap won't work
face_model: str = None,
):
self.img = b64_img(img)
self.enable = enable
self.source_faces_index = source_faces_index
self.faces_index = faces_index
self.model = model
self.face_restorer_name = face_restorer_name
self.face_restorer_visibility = face_restorer_visibility
self.restore_first = restore_first
self.upscaler_name = upscaler_name
self.upscaler_scale = upscaler_scale
self.upscaler_visibility = upscaler_visibility
self.swap_in_source = swap_in_source
self.swap_in_generated = swap_in_generated
self.console_logging_level = console_logging_level
self.gender_source = gender_source
self.gender_target = gender_target
self.save_original = save_original
self.codeFormer_weight = codeFormer_weight
self.source_hash_check = source_hash_check
self.target_hash_check = target_hash_check
self.device = device
self.mask_face = mask_face
self.select_source = select_source
self.face_model = face_model
def to_dict(self):
return [
self.img,
self.enable,
self.source_faces_index,
self.faces_index,
self.model,
self.face_restorer_name,
self.face_restorer_visibility,
self.restore_first,
self.upscaler_name,
self.upscaler_scale,
self.upscaler_visibility,
self.swap_in_source,
self.swap_in_generated,
self.console_logging_level,
self.gender_source,
self.gender_target,
self.save_original,
self.codeFormer_weight,
self.source_hash_check,
self.target_hash_check,
self.device,
self.mask_face,
self.select_source,
self.face_model,
]
class Sag:
def __init__(self,
enable: bool = True, # 1 Enable Sag
scale: float = 0.75,
mask_threshold: float = 1.00
):
self.enable = enable
self.scale = scale
self.mask_threshold = mask_threshold
def to_dict(self):
return [
self.enable,
self.scale,
self.mask_threshold,
]
def b64_img(image: Image) -> str:
return "data:image/png;base64," + raw_b64_img(image)
def raw_b64_img(image: Image) -> str:
# XXX controlnet only accepts RAW base64 without headers
with io.BytesIO() as output_bytes:
metadata = None
for key, value in image.info.items():
if isinstance(key, str) and isinstance(value, str):
if metadata is None:
metadata = PngImagePlugin.PngInfo()
metadata.add_text(key, value)
image.save(output_bytes, format="PNG", pnginfo=metadata)
bytes_data = output_bytes.getvalue()
return str(base64.b64encode(bytes_data), "utf-8")
class WebUIApi:
has_controlnet = False
has_adetailer = False
has_animatediff = False
def __init__(
self,
host="127.0.0.1",
port=7860,
baseurl=None,
sampler="Euler a",
scheduler="automatic",
steps=20,
use_https=False,
username=None,
password=None,
):
if baseurl is None:
if use_https:
baseurl = f"https://{host}:{port}/sdapi/v1"
else:
baseurl = f"http://{host}:{port}/sdapi/v1"
self.baseurl = baseurl
self.default_sampler = sampler
self.default_scheduler = scheduler
self.default_steps = steps
self.session = requests.Session()
if username and password:
self.set_auth(username, password)
else:
self.check_extensions()
def check_extensions(self):
try:
scripts = self.get_scripts()
self.has_controlnet = "controlnet m2m" in scripts["txt2img"]
self.has_adetailer = "adetailer" in scripts["txt2img"]
self.has_animatediff = "animatediff" in scripts["txt2img"]
except:
pass
def set_auth(self, username, password):
self.session.auth = (username, password)
self.check_extensions()
def _to_api_result(self, response):
if response.status_code != 200:
raise RuntimeError(response.status_code, response.text)
r = response.json()
images = []
if "images" in r.keys():
images = [Image.open(io.BytesIO(base64.b64decode(i))) for i in r["images"]]
elif "image" in r.keys():
images = [Image.open(io.BytesIO(base64.b64decode(r["image"])))]
info = ""
if "info" in r.keys():
try:
info = json.loads(r["info"])
except:
info = r["info"]
elif "html_info" in r.keys():
info = r["html_info"]
elif "caption" in r.keys():
info = r["caption"]
parameters = ""
if "parameters" in r.keys():
parameters = r["parameters"]
return WebUIApiResult(images, parameters, info, r)
async def _to_api_result_async(self, response):
if response.status != 200:
raise RuntimeError(response.status, await response.text())
r = await response.json()
images = []
if "images" in r.keys():
images = [Image.open(io.BytesIO(base64.b64decode(i))) for i in r["images"]]
elif "image" in r.keys():
images = [Image.open(io.BytesIO(base64.b64decode(r["image"])))]
info = ""
if "info" in r.keys():
try:
info = json.loads(r["info"])
except:
info = r["info"]
elif "html_info" in r.keys():
info = r["html_info"]
elif "caption" in r.keys():
info = r["caption"]
parameters = ""
if "parameters" in r.keys():
parameters = r["parameters"]
return WebUIApiResult(images, parameters, info, r)
def txt2img(
self,
enable_hr=False,
denoising_strength=0.7,
firstphase_width=0,
firstphase_height=0,
hr_scale=2,
hr_upscaler=HiResUpscaler.Latent,
hr_second_pass_steps=0,
hr_resize_x=0,
hr_resize_y=0,
prompt="",
styles=[],
seed=-1,
subseed=-1,
subseed_strength=0.0,
seed_resize_from_h=0,
seed_resize_from_w=0,
sampler_name=None, # use this instead of sampler_index
scheduler=None,
batch_size=1,
n_iter=1,
steps=None,
cfg_scale=7.0,
width=512,
height=512,
restore_faces=False,
tiling=False,
do_not_save_samples=False,
do_not_save_grid=False,
negative_prompt="",
eta=1.0,
s_churn=0,
s_tmax=0,
s_tmin=0,
s_noise=1,
override_settings={},
override_settings_restore_afterwards=True,
script_args=None, # List of arguments for the script "script_name"
script_name=None,
send_images=True,
save_images=False,
alwayson_scripts={},
controlnet_units: List[ControlNetUnit] = [],
adetailer: List[ADetailer] = [],
animatediff: AnimateDiff = None,
roop: Roop = None,
reactor: ReActor = None,
sag: Sag = None,
sampler_index=None, # deprecated: use sampler_name
use_deprecated_controlnet=False,
use_async=False,
):
if sampler_index is None:
sampler_index = self.default_sampler
if sampler_name is None:
sampler_name = self.default_sampler
if scheduler is None:
scheduler = self.default_scheduler
if steps is None:
steps = self.default_steps
if script_args is None:
script_args = []
payload = {
"enable_hr": enable_hr,
"hr_scale": hr_scale,
"hr_upscaler": hr_upscaler,
"hr_second_pass_steps": hr_second_pass_steps,
"hr_resize_x": hr_resize_x,
"hr_resize_y": hr_resize_y,
"denoising_strength": denoising_strength,
"firstphase_width": firstphase_width,
"firstphase_height": firstphase_height,
"prompt": prompt,
"styles": styles,
"seed": seed,
"subseed": subseed,
"subseed_strength": subseed_strength,
"seed_resize_from_h": seed_resize_from_h,
"seed_resize_from_w": seed_resize_from_w,
"batch_size": batch_size,
"n_iter": n_iter,
"steps": steps,
"cfg_scale": cfg_scale,
"width": width,
"height": height,
"restore_faces": restore_faces,
"tiling": tiling,
"do_not_save_samples": do_not_save_samples,
"do_not_save_grid": do_not_save_grid,
"negative_prompt": negative_prompt,
"eta": eta,
"s_churn": s_churn,
"s_tmax": s_tmax,
"s_tmin": s_tmin,
"s_noise": s_noise,
"override_settings": override_settings,
"override_settings_restore_afterwards": override_settings_restore_afterwards,
"sampler_name": sampler_name,
"scheduler": scheduler,
"sampler_index": sampler_index,
"script_name": script_name,
"script_args": script_args,
"send_images": send_images,
"save_images": save_images,
"alwayson_scripts": alwayson_scripts,
}
if use_deprecated_controlnet and controlnet_units and len(controlnet_units) > 0:
payload["controlnet_units"] = [x.to_dict() for x in controlnet_units]
return self.custom_post(
"controlnet/txt2img", payload=payload, use_async=use_async
)
if adetailer and len(adetailer) > 0:
ads = [True]
for x in adetailer:
ads.append(x.to_dict())
payload["alwayson_scripts"]["ADetailer"] = {
"args": ads
}
elif self.has_adetailer:
payload["alwayson_scripts"]["ADetailer"] = {
"args": [False]
}
if animatediff:
payload["alwayson_scripts"]["animatediff"] = {
"args": [animatediff.to_dict(False)]
}
elif self.has_animatediff:
payload["alwayson_scripts"]["animatediff"] = {
"args": [False],
}
if roop:
payload["alwayson_scripts"]["roop"] = {
"args": roop.to_dict()
}
if reactor:
payload["alwayson_scripts"]["reactor"] = {
"args": reactor.to_dict()
}
if sag:
payload["alwayson_scripts"]["Self Attention Guidance"] = {
"args": sag.to_dict()
}
if controlnet_units and len(controlnet_units) > 0:
payload["alwayson_scripts"]["ControlNet"] = {
"args": [x.to_dict() for x in controlnet_units]
}
elif self.has_controlnet:
# workaround : if not passed, webui will use previous args!
payload["alwayson_scripts"]["ControlNet"] = {"args": []}
return self.post_and_get_api_result(
f"{self.baseurl}/txt2img", payload, use_async
)
def post_and_get_api_result(self, url, json, use_async):
if use_async:
import asyncio
return asyncio.ensure_future(self.async_post(url=url, json=json))
else:
response = self.session.post(url=url, json=json)
return self._to_api_result(response)
async def async_post(self, url, json):
import aiohttp
async with aiohttp.ClientSession(timeout=aiohttp.ClientTimeout()) as session:
infinite_timeout = aiohttp.ClientTimeout(total=None)
auth = aiohttp.BasicAuth(self.session.auth[0], self.session.auth[1]) if self.session.auth else None
async with session.post(url, json=json, auth=auth,
timeout=infinite_timeout) as response: # infinite_timeout timeout here for timeout fix
return await self._to_api_result_async(response)
def img2img(
self,
images=[], # list of PIL Image
resize_mode=0,
denoising_strength=0.75,
image_cfg_scale=1.5,
mask_image=None, # PIL Image mask
mask_blur=4,
inpainting_fill=0,
inpaint_full_res=True,
inpaint_full_res_padding=0,
inpainting_mask_invert=0,
initial_noise_multiplier=1,
prompt="",
styles=[],
seed=-1,
subseed=-1,
subseed_strength=0,
seed_resize_from_h=0,
seed_resize_from_w=0,
sampler_name=None, # use this instead of sampler_index
scheduler=None,
batch_size=1,
n_iter=1,
steps=None,
cfg_scale=7.0,
width=512,
height=512,
restore_faces=False,
tiling=False,
do_not_save_samples=False,
do_not_save_grid=False,
negative_prompt="",
eta=1.0,
s_churn=0,
s_tmax=0,
s_tmin=0,
s_noise=1,
override_settings={},
override_settings_restore_afterwards=True,
script_args=None, # List of arguments for the script "script_name"
sampler_index=None, # deprecated: use sampler_name
include_init_images=False,
script_name=None,
send_images=True,
save_images=False,
alwayson_scripts={},
controlnet_units: List[ControlNetUnit] = [],
adetailer: List[ADetailer] = [],
animatediff: AnimateDiff = None,
roop: Roop = None,
reactor: ReActor = None,
sag: Sag = None,
use_deprecated_controlnet=False,
use_async=False,
):
if sampler_name is None:
sampler_name = self.default_sampler
if sampler_index is None:
sampler_index = self.default_sampler
if scheduler is None:
scheduler = self.default_scheduler
if steps is None:
steps = self.default_steps
if script_args is None:
script_args = []
payload = {
"init_images": [b64_img(x) for x in images],
"resize_mode": resize_mode,
"denoising_strength": denoising_strength,
"mask_blur": mask_blur,
"inpainting_fill": inpainting_fill,
"inpaint_full_res": inpaint_full_res,
"inpaint_full_res_padding": inpaint_full_res_padding,
"inpainting_mask_invert": inpainting_mask_invert,
"initial_noise_multiplier": initial_noise_multiplier,
"prompt": prompt,
"styles": styles,
"seed": seed,
"subseed": subseed,
"subseed_strength": subseed_strength,
"seed_resize_from_h": seed_resize_from_h,
"seed_resize_from_w": seed_resize_from_w,
"batch_size": batch_size,
"n_iter": n_iter,
"steps": steps,
"cfg_scale": cfg_scale,
"image_cfg_scale": image_cfg_scale,
"width": width,
"height": height,
"restore_faces": restore_faces,
"tiling": tiling,
"do_not_save_samples": do_not_save_samples,
"do_not_save_grid": do_not_save_grid,
"negative_prompt": negative_prompt,
"eta": eta,
"s_churn": s_churn,
"s_tmax": s_tmax,
"s_tmin": s_tmin,
"s_noise": s_noise,
"override_settings": override_settings,
"override_settings_restore_afterwards": override_settings_restore_afterwards,
"sampler_name": sampler_name,
"scheduler": scheduler,
"sampler_index": sampler_index,
"include_init_images": include_init_images,
"script_name": script_name,
"script_args": script_args,
"send_images": send_images,
"save_images": save_images,
"alwayson_scripts": alwayson_scripts,
}
if mask_image is not None:
payload["mask"] = b64_img(mask_image)
if use_deprecated_controlnet and controlnet_units and len(controlnet_units) > 0:
payload["controlnet_units"] = [x.to_dict() for x in controlnet_units]
return self.custom_post(
"controlnet/img2img", payload=payload, use_async=use_async
)
if adetailer and len(adetailer) > 0:
ads = [True]
for x in adetailer:
ads.append(x.to_dict())
payload["alwayson_scripts"]["ADetailer"] = {
"args": ads
}
elif self.has_adetailer:
payload["alwayson_scripts"]["ADetailer"] = {
"args": [False]
}
if animatediff:
payload["alwayson_scripts"]["animatediff"] = {
"args": [animatediff.to_dict(True)]
}
elif self.has_animatediff:
payload["alwayson_scripts"]["animatediff"] = {
"args": [False],
}
if roop:
payload["alwayson_scripts"]["roop"] = {
"args": roop.to_dict()
}
if reactor:
payload["alwayson_scripts"]["reactor"] = {
"args": reactor.to_dict()
}
if sag:
payload["alwayson_scripts"]["Self Attention Guidance"] = {
"args": sag.to_dict()
}
if controlnet_units and len(controlnet_units) > 0:
payload["alwayson_scripts"]["ControlNet"] = {
"args": [x.to_dict() for x in controlnet_units]
}
elif self.has_controlnet:
payload["alwayson_scripts"]["ControlNet"] = {"args": []}
return self.post_and_get_api_result(
f"{self.baseurl}/img2img", payload, use_async
)
def extra_single_image(
self,
image, # PIL Image
resize_mode=0,
show_extras_results=True,
gfpgan_visibility=0,
codeformer_visibility=0,
codeformer_weight=0,
upscaling_resize=2,
upscaling_resize_w=512,
upscaling_resize_h=512,
upscaling_crop=True,
upscaler_1="None",
upscaler_2="None",
extras_upscaler_2_visibility=0,
upscale_first=False,
use_async=False,
):
payload = {
"resize_mode": resize_mode,
"show_extras_results": show_extras_results,
"gfpgan_visibility": gfpgan_visibility,
"codeformer_visibility": codeformer_visibility,
"codeformer_weight": codeformer_weight,
"upscaling_resize": upscaling_resize,
"upscaling_resize_w": upscaling_resize_w,
"upscaling_resize_h": upscaling_resize_h,
"upscaling_crop": upscaling_crop,
"upscaler_1": upscaler_1,
"upscaler_2": upscaler_2,
"extras_upscaler_2_visibility": extras_upscaler_2_visibility,
"upscale_first": upscale_first,
"image": b64_img(image),
}
return self.post_and_get_api_result(
f"{self.baseurl}/extra-single-image", payload, use_async
)
def extra_batch_images(
self,
images, # list of PIL images
name_list=None, # list of image names
resize_mode=0,
show_extras_results=True,
gfpgan_visibility=0,
codeformer_visibility=0,
codeformer_weight=0,
upscaling_resize=2,
upscaling_resize_w=512,
upscaling_resize_h=512,
upscaling_crop=True,
upscaler_1="None",
upscaler_2="None",
extras_upscaler_2_visibility=0,
upscale_first=False,
use_async=False,
):
if name_list is not None:
if len(name_list) != len(images):
raise RuntimeError("len(images) != len(name_list)")
else:
name_list = [f"image{i + 1:05}" for i in range(len(images))]
images = [b64_img(x) for x in images]
image_list = []
for name, image in zip(name_list, images):
image_list.append({"data": image, "name": name})
payload = {
"resize_mode": resize_mode,
"show_extras_results": show_extras_results,
"gfpgan_visibility": gfpgan_visibility,
"codeformer_visibility": codeformer_visibility,
"codeformer_weight": codeformer_weight,
"upscaling_resize": upscaling_resize,
"upscaling_resize_w": upscaling_resize_w,
"upscaling_resize_h": upscaling_resize_h,
"upscaling_crop": upscaling_crop,
"upscaler_1": upscaler_1,
"upscaler_2": upscaler_2,
"extras_upscaler_2_visibility": extras_upscaler_2_visibility,
"upscale_first": upscale_first,
"imageList": image_list,
}
return self.post_and_get_api_result(
f"{self.baseurl}/extra-batch-images", payload, use_async
)
# XXX 500 error (2022/12/26)
def png_info(self, image):
payload = {
"image": b64_img(image),
}
response = self.session.post(url=f"{self.baseurl}/png-info", json=payload)
return self._to_api_result(response)
"""
:param image pass base64 encoded image or PIL Image
:param model "clip" or "deepdanbooru"
"""
def interrogate(self, image, model="clip"):
payload = {
"image": b64_img(image) if isinstance(image, Image.Image) else image,
"model": model,
}
response = self.session.post(url=f"{self.baseurl}/interrogate", json=payload)
return self._to_api_result(response)
def list_prompt_gen_models(self):
r = self.custom_get("promptgen/list_models")
return r['available_models']
def prompt_gen(self,
model_name: str = "AUTOMATIC/promptgen-lexart",
batch_count: int = 1,
batch_size: int = 10,
text: str = "",
min_length: int = 20,
max_length: int = 150,
num_beams: int = 1,
temperature: float = 1,
repetition_penalty: float = 1,
length_preference: float = 1,
sampling_mode: str = "Top K",
top_k: float = 12,
top_p: float = 0.15,
):
payload = {
"model_name": model_name,
"batch_count": batch_count,
"batch_size": batch_size,
"text": text,
"min_length": min_length,
"max_length": max_length,
"num_beams": num_beams,
"temperature": temperature,
"repetition_penalty": repetition_penalty,
"length_preference": length_preference,
"sampling_mode": sampling_mode,
"top_k": top_k,
"top_p": top_p
}
r = self.custom_post("promptgen/generate", payload=payload)
return r.json['prompts']
def interrupt(self):
response = self.session.post(url=f"{self.baseurl}/interrupt")
return response.json()
def skip(self):
response = self.session.post(url=f"{self.baseurl}/skip")
return response.json()
def get_options(self):
response = self.session.get(url=f"{self.baseurl}/options")
return response.json()
def set_options(self, options):
response = self.session.post(url=f"{self.baseurl}/options", json=options)
return response.json()
def get_cmd_flags(self):
response = self.session.get(url=f"{self.baseurl}/cmd-flags")
return response.json()
def get_progress(self):
response = self.session.get(url=f"{self.baseurl}/progress")
return response.json()
def get_cmd_flags(self):
response = self.session.get(url=f"{self.baseurl}/cmd-flags")
return response.json()
def get_samplers(self):
response = self.session.get(url=f"{self.baseurl}/samplers")
return response.json()
def get_sd_vae(self):
response = self.session.get(url=f"{self.baseurl}/sd-vae")
return response.json()
def get_upscalers(self):
response = self.session.get(url=f"{self.baseurl}/upscalers")
return response.json()
def get_latent_upscale_modes(self):
response = self.session.get(url=f"{self.baseurl}/latent-upscale-modes")
return response.json()
def get_loras(self):
response = self.session.get(url=f"{self.baseurl}/loras")
return response.json()
def get_sd_models(self):
response = self.session.get(url=f"{self.baseurl}/sd-models")
return response.json()
def get_hypernetworks(self):
response = self.session.get(url=f"{self.baseurl}/hypernetworks")
return response.json()
def get_face_restorers(self):
response = self.session.get(url=f"{self.baseurl}/face-restorers")
return response.json()
def get_realesrgan_models(self):
response = self.session.get(url=f"{self.baseurl}/realesrgan-models")
return response.json()
def get_prompt_styles(self):
response = self.session.get(url=f"{self.baseurl}/prompt-styles")
return response.json()
def get_artist_categories(self): # deprecated ?
response = self.session.get(url=f"{self.baseurl}/artist-categories")
return response.json()
def get_artists(self): # deprecated ?
response = self.session.get(url=f"{self.baseurl}/artists")
return response.json()
def refresh_checkpoints(self):
response = self.session.post(url=f"{self.baseurl}/refresh-checkpoints")
return response.json()
def get_scripts(self):
response = self.session.get(url=f"{self.baseurl}/scripts")
return response.json()
def get_embeddings(self):
response = self.session.get(url=f"{self.baseurl}/embeddings")
return response.json()
def get_memory(self):
response = self.session.get(url=f"{self.baseurl}/memory")
return response.json()
def get_schedulers(self):
response = self.session.get(url=f"{self.baseurl}/schedulers")
return response.json()
def get_endpoint(self, endpoint, baseurl):
if baseurl:
return f"{self.baseurl}/{endpoint}"
else:
from urllib.parse import urlparse, urlunparse
parsed_url = urlparse(self.baseurl)
basehost = parsed_url.netloc
parsed_url2 = (parsed_url[0], basehost, endpoint, "", "", "")
return urlunparse(parsed_url2)
def custom_get(self, endpoint, baseurl=False):
url = self.get_endpoint(endpoint, baseurl)
response = self.session.get(url=url)
return response.json()
def custom_post(self, endpoint, payload={}, baseurl=False, use_async=False):
url = self.get_endpoint(endpoint, baseurl)
if use_async:
import asyncio
return asyncio.ensure_future(self.async_post(url=url, json=payload))
else:
response = self.session.post(url=url, json=payload)
return self._to_api_result(response)
def controlnet_version(self):
r = self.custom_get("controlnet/version")
return r["version"]
def controlnet_model_list(self):
r = self.custom_get("controlnet/model_list")
return r["model_list"]
def controlnet_module_list(self):
r = self.custom_get("controlnet/module_list")
return r["module_list"]
def controlnet_detect(
self, images, module="none", processor_res=512, threshold_a=64, threshold_b=64
):
images = [b64_img(x) for x in images]
payload = {
"controlnet_module": module,
"controlnet_images": images,
"controlnet_processor_res": processor_res,
"controlnet_threshold_a": threshold_a,
"controlnet_threshold_b": threshold_b,
}
r = self.custom_post("controlnet/detect", payload=payload)
return r
def util_get_model_names(self):
return sorted([x["title"] for x in self.get_sd_models()])
def util_get_sampler_names(self):
return sorted([s['name'] for s in self.get_samplers()])
def util_get_scheduler_names(self):
return sorted([s['name'] for s in self.get_schedulers()])
def util_set_model(self, name, find_closest=True):
if find_closest:
name = name.lower()
models = self.util_get_model_names()
found_model = None
if name in models:
found_model = name
elif find_closest:
import difflib
def str_simularity(a, b):
return difflib.SequenceMatcher(None, a, b).ratio()
max_sim = 0.0
max_model = models[0]
for model in models:
sim = str_simularity(name, model)
if sim >= max_sim:
max_sim = sim
max_model = model
found_model = max_model
if found_model:
print(f"loading {found_model}")
options = {}
options["sd_model_checkpoint"] = found_model
self.set_options(options)
print(f"model changed to {found_model}")
else:
print("model not found")
def util_get_current_model(self):
options = self.get_options()
if ("sd_model_checkpoint" in options):
return options["sd_model_checkpoint"]
else:
sd_models = self.get_sd_models()
sd_model = [model for model in sd_models if model["sha256"] == options["sd_checkpoint_hash"]]
return sd_model[0]["title"]
def util_wait_for_ready(self, check_interval=5.0):
import time
while True:
result = self.get_progress()
progress = result["progress"]
job_count = result["state"]["job_count"]
if progress == 0.0 and job_count == 0:
break
else:
print(f"[WAIT]: progress = {progress:.4f}, job_count = {job_count}")
time.sleep(check_interval)
## Interface for extensions
@dataclass
class ModelKeywordResult:
keywords: list
model: str
oldhash: str
match_source: str
class ModelKeywordInterface:
def __init__(self, webuiapi):
self.api = webuiapi
def get_keywords(self):
result = self.api.custom_get("model_keyword/get_keywords")
keywords = result["keywords"]
model = result["model"]
oldhash = result["hash"]
match_source = result["match_source"]
return ModelKeywordResult(keywords, model, oldhash, match_source)
# https://github.com/Klace/stable-diffusion-webui-instruct-pix2pix
class InstructPix2PixInterface:
def __init__(self, webuiapi):
self.api = webuiapi
def img2img(
self,
images=[],
prompt: str = "",
negative_prompt: str = "",
output_batches: int = 1,
sampler: str = "Euler a",
steps: int = 20,
seed: int = 0,
randomize_seed: bool = True,
text_cfg: float = 7.5,
image_cfg: float = 1.5,
randomize_cfg: bool = False,
output_image_width: int = 512,
):
init_images = [b64_img(x) for x in images]
payload = {
"init_images": init_images,
"prompt": prompt,
"negative_prompt": negative_prompt,
"output_batches": output_batches,
"sampler": sampler,
"steps": steps,
"seed": seed,
"randomize_seed": randomize_seed,
"text_cfg": text_cfg,
"image_cfg": image_cfg,
"randomize_cfg": randomize_cfg,
"output_image_width": output_image_width,
}
return self.api.custom_post("instruct-pix2pix/img2img", payload=payload)
# https://github.com/AUTOMATIC1111/stable-diffusion-webui-rembg
class RemBGInterface:
def __init__(self, webuiapi):
self.api = webuiapi
def rembg(
self,
input_image: str = "", # image string (?)
model: str = 'u2net',
# [None, 'u2net', 'u2netp', 'u2net_human_seg', 'u2net_cloth_seg','silueta','isnet-general-use','isnet-anime']
return_mask: bool = False,
alpha_matting: bool = False,
alpha_matting_foreground_threshold: int = 240,
alpha_matting_background_threshold: int = 10,
alpha_matting_erode_size: int = 10
):
payload = {
"input_image": b64_img(input_image),
"model": model,
"return_mask": return_mask,
"alpha_matting": alpha_matting,
"alpha_matting_foreground_threshold": alpha_matting_foreground_threshold,
"alpha_matting_background_threshold": alpha_matting_background_threshold,
"alpha_matting_erode_size": alpha_matting_erode_size
}
return self.api.custom_post("rembg", payload=payload)
# https://github.com/Mikubill/sd-webui-controlnet
class ControlNetInterface:
def __init__(self, webuiapi, show_deprecation_warning=True):
self.api = webuiapi
self.show_deprecation_warning = show_deprecation_warning
def print_deprecation_warning(self):
print(
"ControlNetInterface txt2img/img2img is deprecated. Please use normal txt2img/img2img with controlnet_units param"
)
def txt2img(
self,
prompt: str = "",
negative_prompt: str = "",
controlnet_image: [] = [],
controlnet_mask: [] = [],
controlnet_module: str = "",
controlnet_model: str = "",
controlnet_weight: float = 0.5,
controlnet_resize_mode: str = "Scale to Fit (Inner Fit)",
controlnet_low_vram: bool = False,
controlnet_processor_res: int = 512,
controlnet_threshold_a: int = 64,
controlnet_threshold_b: int = 64,
controlnet_guidance: float = 1.0,
enable_hr: bool = False, # hiresfix
denoising_strength: float = 0.5,
hr_scale: float = 1.5,
hr_upscale: str = "Latent",
guess_mode: bool = True,
seed: int = -1,
subseed: int = -1,
subseed_strength: int = -1,
sampler_index: str = "Euler a",
batch_size: int = 1,
n_iter: int = 1, # Iteration
steps: int = 20,
cfg_scale: float = 7,
width: int = 512,
height: int = 512,
restore_faces: bool = False,
override_settings: Dict[str, Any] = None,
override_settings_restore_afterwards: bool = True,
):
if self.show_deprecation_warning:
self.print_deprecation_warning()
controlnet_image_b64 = [raw_b64_img(x) for x in controlnet_image]
controlnet_mask_b64 = [raw_b64_img(x) for x in controlnet_mask]
payload = {
"prompt": prompt,
"negative_prompt": negative_prompt,
"controlnet_image": controlnet_image_b64,
"controlnet_mask": controlnet_mask_b64,
"controlnet_module": controlnet_module,
"controlnet_model": controlnet_model,
"controlnet_weight": controlnet_weight,
"controlnet_resize_mode": controlnet_resize_mode,
"controlnet_low_vram": controlnet_low_vram,
"controlnet_processor_res": controlnet_processor_res,
"controlnet_threshold_a": controlnet_threshold_a,
"controlnet_threshold_b": controlnet_threshold_b,
"enable_hr": enable_hr,
"denoising_strength": denoising_strength,
"hr_scale": hr_scale,
"hr_upscale": hr_upscale,
"guess_mode": guess_mode,
"seed": seed,
"subseed": subseed,
"subseed_strength": subseed_strength,
"sampler_index": sampler_index,
"batch_size": batch_size,
"n_iter": n_iter,
"steps": steps,
"cfg_scale": cfg_scale,
"width": width,
"height": height,
"restore_faces": restore_faces,
"override_settings": override_settings,
"override_settings_restore_afterwards": override_settings_restore_afterwards,
}
return self.api.custom_post("controlnet/txt2img", payload=payload)
def img2img(
self,
init_images: [] = [],
mask: str = None,
mask_blur: int = 30,
inpainting_fill: int = 0,
inpaint_full_res: bool = True,
inpaint_full_res_padding: int = 1,
inpainting_mask_invert: int = 1,
resize_mode: int = 0,
denoising_strength: float = 0.7,
prompt: str = "",
negative_prompt: str = "",
controlnet_image: [] = [],
controlnet_mask: [] = [],
controlnet_module: str = "",
controlnet_model: str = "",
controlnet_weight: float = 1.0,
controlnet_resize_mode: str = "Scale to Fit (Inner Fit)",
controlnet_low_vram: bool = False,
controlnet_processor_res: int = 512,
controlnet_threshold_a: int = 64,
controlnet_threshold_b: int = 64,
guess_mode: bool = True,
seed: int = -1,
subseed: int = -1,
subseed_strength: int = -1,
sampler_index: str = "",
batch_size: int = 1,
n_iter: int = 1, # Iteration
steps: int = 20,
cfg_scale: float = 7,
width: int = 512,
height: int = 512,
restore_faces: bool = False,
include_init_images: bool = True,
override_settings: Dict[str, Any] = None,
override_settings_restore_afterwards: bool = True,
):
if self.show_deprecation_warning:
self.print_deprecation_warning()
init_images_b64 = [raw_b64_img(x) for x in init_images]
controlnet_image_b64 = [raw_b64_img(x) for x in controlnet_image]
controlnet_mask_b64 = [raw_b64_img(x) for x in controlnet_mask]
payload = {
"init_images": init_images_b64,
"mask": raw_b64_img(mask) if mask else None,
"mask_blur": mask_blur,
"inpainting_fill": inpainting_fill,
"inpaint_full_res": inpaint_full_res,
"inpaint_full_res_padding": inpaint_full_res_padding,
"inpainting_mask_invert": inpainting_mask_invert,
"resize_mode": resize_mode,
"denoising_strength": denoising_strength,
"prompt": prompt,
"negative_prompt": negative_prompt,
"controlnet_image": controlnet_image_b64,
"controlnet_mask": controlnet_mask_b64,
"controlnet_module": controlnet_module,
"controlnet_model": controlnet_model,
"controlnet_weight": controlnet_weight,
"controlnet_resize_mode": controlnet_resize_mode,
"controlnet_low_vram": controlnet_low_vram,
"controlnet_processor_res": controlnet_processor_res,
"controlnet_threshold_a": controlnet_threshold_a,
"controlnet_threshold_b": controlnet_threshold_b,
"guess_mode": guess_mode,
"seed": seed,
"subseed": subseed,
"subseed_strength": subseed_strength,
"sampler_index": sampler_index,
"batch_size": batch_size,
"n_iter": n_iter,
"steps": steps,
"cfg_scale": cfg_scale,
"width": width,
"height": height,
"restore_faces": restore_faces,
"include_init_images": include_init_images,
"override_settings": override_settings,
"override_settings_restore_afterwards": override_settings_restore_afterwards,
}
return self.api.custom_post("controlnet/img2img", payload=payload)
def model_list(self):
r = self.api.custom_get("controlnet/model_list")
return r["model_list"]
# https://github.com/continue-revolution/sd-webui-segment-anything
@dataclass
class SegmentAnythingSamResult:
message: Optional[str]
blended_images: List[Image.Image]
masks: List[Image.Image]
masked_images: List[Image.Image]
@dataclass
class SegmentAnythingGinoResult:
message: str
image_with_box: Image.Image
@dataclass
class SegmentAnythingDilationResult:
blended_image: Image.Image
mask: Image.Image
masked_image: Image.Image
@dataclass
class SegmentAnythingControlNetSegNotRandomResult:
message: str
sem_presam: Image.Image
sem_postsam: Image.Image
blended_presam: Image.Image
blended_postsam: Image.Image
@dataclass
class SegmentAnythingControlNetSegRandomResult:
message: str
blended_image: Image.Image
random_seg: Image.Image
edit_anything_control: Image.Image
@dataclass
class SegmentAnythingSemanticSegWithCatIdResult:
message: str
blended_image: Image.Image
mask: Image.Image
masked_image: Image.Image
resized_input: Image.Image
class SegmentAnythingInterface:
def __init__(self, webuiapi: WebUIApi):
self.api = webuiapi
def heartbeat(self) -> Dict[str, str]:
"""Check if this extension is working."""
return self.api.custom_get("sam/heartbeat")
def get_sam_models(self) -> List[str]:
"""Get available SAM models"""
return self.api.custom_get("sam/sam-model")
def sam_predict(
self,
image: Image,
sam_model_name: str = "sam_vit_h_4b8939.pth",
sam_positive_points: Optional[List[List[float]]] = None,
sam_negative_points: Optional[List[List[float]]] = None,
dino_enabled: bool = False,
dino_model_name: Optional[str] = "GroundingDINO_SwinT_OGC (694MB)",
dino_text_prompt: Optional[str] = None,
dino_box_threshold: Optional[float] = 0.3,
dino_preview_checkbox: bool = False,
dino_preview_boxes_selection: Optional[List[int]] = None
) -> SegmentAnythingSamResult:
"""
Get masks from SAM
:param image: Input image.
:param sam_model_name: SAM model name. You should manually download models before using them.
:param sam_positive_points: Positive point prompts in N * 2 python list.
:param sam_negative_points: Negative point prompts in N * 2 python list.
:param dino_enabled: Whether to use GroundingDINO to generate bounding boxes
from text to guide SAM to generate masks.
:param dino_model_name: Choose one of "GroundingDINO_SwinT_OGC (694MB)" and "GroundingDINO_SwinB (938MB)"
as your desired GroundingDINO model.
:param dino_text_prompt: Text prompt for GroundingDINO to generate bounding boxes.
Separate different categories with .
:param dino_box_threshold: Threshold for selecting bounding boxes. Do not use a very high value,
otherwise you may get no box.
:param dino_preview_checkbox: Whether to preview checkbox.
You can enable preview to select boxes you want if you have accessed API dino-predict
:param dino_preview_boxes_selection: Choose the boxes you want. Index start from 0.
"""
payload = {
"input_image": raw_b64_img(image),
"sam_model_name": sam_model_name,
"sam_positive_points": sam_positive_points or [],
"sam_negative_points": sam_negative_points or [],
"dino_enabled": dino_enabled,
"dino_model_name": dino_model_name,
"dino_text_prompt": dino_text_prompt,
"dino_box_threshold": dino_box_threshold,
"dino_preview_checkbox": dino_preview_checkbox,
"dino_preview_boxes_selection": dino_preview_boxes_selection
}
url = self.api.get_endpoint("sam/sam-predict", baseurl=False)
r = self.api.session.post(url=url, json=payload).json()
return SegmentAnythingSamResult(
message=r.get("msg"),
blended_images=[Image.open(io.BytesIO(base64.b64decode(i))) for i in r["blended_images"]],
masks=[Image.open(io.BytesIO(base64.b64decode(i))) for i in r["masks"]],
masked_images=[Image.open(io.BytesIO(base64.b64decode(i))) for i in r["masked_images"]]
)
def dino_predict(
self,
image: Image,
text_prompt: str,
dino_model_name: str = "GroundingDINO_SwinT_OGC (694MB)",
box_threshold: float = 0.3
) -> SegmentAnythingGinoResult:
"""
Get bounding boxes from GroundingDINO
:param image: Input image.
:param text_prompt: Text prompt for GroundingDINO to generate bounding boxes.
Separate different categories with .
:param dino_model_name: Choose one of "GroundingDINO_SwinT_OGC (694MB)" and "GroundingDINO_SwinB (938MB)"
as your desired GroundingDINO model.
:param box_threshold: Threshold for selecting bounding boxes. Do not use a very high value,
otherwise you may get no box.
"""
payload = {
"input_image": raw_b64_img(image),
"text_prompt": text_prompt,
"dino_model_name": dino_model_name,
"box_threshold": box_threshold
}
url = self.api.get_endpoint("sam/dino-predict", baseurl=False)
r = self.api.session.post(url=url, json=payload).json()
return SegmentAnythingGinoResult(
message=r.get("msg"),
image_with_box=Image.open(io.BytesIO(base64.b64decode(r["image_with_box"])))
)
def dilate_mask(
self,
image: Image,
mask: Image,
dilate_amount: int = 10
) -> SegmentAnythingDilationResult:
"""
Expand mask
:param image: Input image.
:param mask: Input mask.
:param dilate_amount: Mask expansion amount from 0 to 100.
"""
payload = {
"input_image": raw_b64_img(image),
"mask": raw_b64_img(mask),
"dilate_amount": dilate_amount
}
url = self.api.get_endpoint("sam/dilate-mask", baseurl=False)
r = self.api.session.post(url=url, json=payload).json()
return SegmentAnythingDilationResult(
blended_image=Image.open(io.BytesIO(base64.b64decode(r["blended_image"]))),
mask=Image.open(io.BytesIO(base64.b64decode(r["mask"]))),
masked_image=Image.open(io.BytesIO(base64.b64decode(r["masked_image"])))
)
def generate_semantic_segmentation(
self,
image: Image,
sam_model_name: str = "sam_vit_h_4b8939.pth",
processor: str = "seg_ofade20k",
processor_res: int = 512,
pixel_perfect: bool = False,
resize_mode: Optional[int] = 1,
target_width: Optional[int] = None,
target_height: Optional[int] = None,
points_per_side: Optional[int] = 32,
points_per_batch: int = 64,
pred_iou_thresh: float = 0.88,
stability_score_thresh: float = 0.95,
stability_score_offset: float = 1.0,
box_nms_thresh: float = 0.7,
crop_n_layers: int = 0,
crop_nms_thresh: float = 0.7,
crop_overlap_ratio: float = 512 / 1500,
crop_n_points_downscale_factor: int = 1,
min_mask_region_area: int = 0
) -> Union[SegmentAnythingControlNetSegNotRandomResult, SegmentAnythingControlNetSegRandomResult]:
"""
Generate semantic segmentation enhanced by SAM.
:param image: Input image.
:param sam_model_name: SAM model name.
:param processor: Preprocessor for semantic segmentation, choose from one of "seg_ufade20k"
(uniformer trained on ade20k, performance really bad, can be greatly enhanced by SAM),
"seg_ofade20k" (oneformer trained on ade20k, performance far better than uniformer, can
be slightly improved by SAM), "seg_ofcoco" (oneformer trained on coco, similar to seg_ofade20k),
"random" (for EditAnything)
:param processor_res: Preprocessor resolution, range in (64, 2048].
:param pixel_perfect: Whether to enable pixel perfect. If enabled, target_W and target_H will be required,
and the processor resolution will be overridden by the optimal value.
:param resize_mode: Resize mode from the original shape to target shape,
only effective when pixel_perfect is enabled. 0: just resize, 1: crop and resize, 2: resize and fill
:param target_width: [Required if pixel_perfect is True] Target width if the segmentation will be used
to generate a new image.
:param target_height: [Required if pixel_perfect is True] Target height if the segmentation will be used
to generate a new image.
:param points_per_side: The number of points to be sampled
along one side of the image. The total number of points is
points_per_side**2. If None, 'point_grids' must provide explicit
point sampling.
:param points_per_batch: Sets the number of points run simultaneously
by the model. Higher numbers may be faster but use more GPU memory.
:param pred_iou_thresh: A filtering threshold in [0,1], using the
model's predicted mask quality.
:param stability_score_thresh: A filtering threshold in [0,1], using
the stability of the mask under changes to the cutoff used to binarize
the model's mask predictions.
:param stability_score_offset: The amount to shift the cutoff when
calculated the stability score.
:param box_nms_thresh: The box IoU cutoff used by non-maximal
suppression to filter duplicate masks.
:param crop_n_layers: If >0, mask prediction will be run again on
crops of the image. Sets the number of layers to run, where each
layer has 2**i_layer number of image crops.
:param crop_nms_thresh: The box IoU cutoff used by non-maximal
suppression to filter duplicate masks between different crops.
:param crop_overlap_ratio: Sets the degree to which crops overlap.
In the first crop layer, crops will overlap by this fraction of
the image length. Later layers with more crops scale down this overlap.
:param crop_n_points_downscale_factor: The number of points-per-side
sampled in layer n is scaled down by crop_n_points_downscale_factor**n.
:param min_mask_region_area: If >0, postprocessing will be applied
to remove disconnected regions and holes in masks with area smaller
than min_mask_region_area. Requires opencv.
"""
payload = {
"input_image": raw_b64_img(image),
"sam_model_name": sam_model_name,
"processor": processor,
"processor_res": processor_res,
"pixel_perfect": pixel_perfect,
"resize_mode": resize_mode,
"target_W": target_width,
"target_H": target_height
}
autosam_conf = {
"points_per_side": points_per_side,
"points_per_batch": points_per_batch,
"pred_iou_thresh": pred_iou_thresh,
"stability_score_thresh": stability_score_thresh,
"stability_score_offset": stability_score_offset,
"box_nms_thresh": box_nms_thresh,
"crop_n_layers": crop_n_layers,
"crop_nms_thresh": crop_nms_thresh,
"crop_overlap_ratio": crop_overlap_ratio,
"crop_n_points_downscale_factor": crop_n_points_downscale_factor,
"min_mask_region_area": min_mask_region_area
}
url = self.api.get_endpoint("sam/controlnet-seg", baseurl=False)
r = self.api.session.post(url=url, json={"payload": payload, "autosam_conf": autosam_conf}).json()
if r.get("random_seg"):
return SegmentAnythingControlNetSegRandomResult(
message=r.get("msg"),
blended_image=Image.open(io.BytesIO(base64.b64decode(r["blended_image"]))),
random_seg=Image.open(io.BytesIO(base64.b64decode(r["random_seg"]))),
edit_anything_control=Image.open(io.BytesIO(base64.b64decode(r["edit_anything_control"])))
)
else:
return SegmentAnythingControlNetSegNotRandomResult(
message=r.get("msg"),
sem_presam=Image.open(io.BytesIO(base64.b64decode(r["sem_presam"]))),
sem_postsam=Image.open(io.BytesIO(base64.b64decode(r["sem_postsam"]))),
blended_presam=Image.open(io.BytesIO(base64.b64decode(r["blended_presam"]))),
blended_postsam=Image.open(io.BytesIO(base64.b64decode(r["blended_postsam"])))
)
def sam_and_semantic_seg_with_cat_id(
self,
image: Image,
category: str,
sam_model_name: str = "sam_vit_h_4b8939.pth",
processor: str = "seg_ofade20k",
processor_res: int = 512,
pixel_perfect: bool = False,
resize_mode: Optional[int] = 1,
target_width: Optional[int] = None,
target_height: Optional[int] = None,
points_per_side: Optional[int] = 32,
points_per_batch: int = 64,
pred_iou_thresh: float = 0.88,
stability_score_thresh: float = 0.95,
stability_score_offset: float = 1.0,
box_nms_thresh: float = 0.7,
crop_n_layers: int = 0,
crop_nms_thresh: float = 0.7,
crop_overlap_ratio: float = 512 / 1500,
crop_n_points_downscale_factor: int = 1,
min_mask_region_area: int = 0
) -> SegmentAnythingSemanticSegWithCatIdResult:
"""
Get masks generated by SAM + Semantic segmentation with category IDs.
:param image: Input image.
:param category: Category IDs separated by +.
:param sam_model_name: SAM model name.
:param processor: Preprocessor for semantic segmentation.
:param processor_res: Preprocessor resolution.
:param pixel_perfect: Whether to enable pixel perfect.
:param resize_mode: Resize mode from the original shape to target shape.
:param target_width: Target width if the segmentation will be used to generate a new image.
:param target_height: Target height if the segmentation will be used to generate a new image.
:param points_per_side: The number of points to be sampled
along one side of the image. The total number of points is
points_per_side**2. If None, 'point_grids' must provide explicit
point sampling.
:param points_per_batch: Sets the number of points run simultaneously
by the model. Higher numbers may be faster but use more GPU memory.
:param pred_iou_thresh: A filtering threshold in [0,1], using the
model's predicted mask quality.
:param stability_score_thresh: A filtering threshold in [0,1], using
the stability of the mask under changes to the cutoff used to binarize
the model's mask predictions.
:param stability_score_offset: The amount to shift the cutoff when
calculated the stability score.
:param box_nms_thresh: The box IoU cutoff used by non-maximal
suppression to filter duplicate masks.
:param crop_n_layers: If >0, mask prediction will be run again on
crops of the image. Sets the number of layers to run, where each
layer has 2**i_layer number of image crops.
:param crop_nms_thresh: The box IoU cutoff used by non-maximal
suppression to filter duplicate masks between different crops.
:param crop_overlap_ratio: Sets the degree to which crops overlap.
In the first crop layer, crops will overlap by this fraction of
the image length. Later layers with more crops scale down this overlap.
:param crop_n_points_downscale_factor: The number of points-per-side
sampled in layer n is scaled down by crop_n_points_downscale_factor**n.
:param min_mask_region_area: If >0, postprocessing will be applied
to remove disconnected regions and holes in masks with area smaller
than min_mask_region_area. Requires opencv.
"""
payload = {
"input_image": raw_b64_img(image),
"category": category,
"sam_model_name": sam_model_name,
"processor": processor,
"processor_res": processor_res,
"pixel_perfect": pixel_perfect,
"resize_mode": resize_mode,
"target_W": target_width,
"target_H": target_height,
}
autosam_conf = {
"points_per_side": points_per_side,
"points_per_batch": points_per_batch,
"pred_iou_thresh": pred_iou_thresh,
"stability_score_thresh": stability_score_thresh,
"stability_score_offset": stability_score_offset,
"box_nms_thresh": box_nms_thresh,
"crop_n_layers": crop_n_layers,
"crop_nms_thresh": crop_nms_thresh,
"crop_overlap_ratio": crop_overlap_ratio,
"crop_n_points_downscale_factor": crop_n_points_downscale_factor,
"min_mask_region_area": min_mask_region_area
}
url = self.api.get_endpoint("sam/category-mask", baseurl=False)
r = self.api.session.post(url=url, json={"payload": payload, "autosam_conf": autosam_conf}).json()
return SegmentAnythingSemanticSegWithCatIdResult(
message=r.get("msg"),
blended_image=Image.open(io.BytesIO(base64.b64decode(r["blended_image"]))),
mask=Image.open(io.BytesIO(base64.b64decode(r["mask"]))),
masked_image=Image.open(io.BytesIO(base64.b64decode(r["masked_image"]))),
resized_input=Image.open(io.BytesIO(base64.b64decode(r["resized_input"])))
)