Spaces:
Sleeping
Sleeping
import torch | |
import torch.nn as nn | |
import math | |
# RMSNorm is a normalization technique that normalizes the input by dividing by the square root of the variance plus a small number to prevent division by zero | |
class LlamaRMSNorm(nn.Module): | |
def __init__(self, hidden_size, eps=1e-5): # the number of features/dimensions/embeddings in the input, eps is a small number to prevent division by zero | |
super().__init__() | |
self.weight = nn.Parameter(torch.ones(hidden_size)) # weight is a learnable parameter that scales the input | |
self.eps = eps | |
def forward(self, x): | |
norm = x.pow(2).mean(-1, keepdim=True).sqrt() + self.eps # compute the norm of the input | |
return x / norm * self.weight # normalize the input by dividing by the norm and scale it by the weight parameter | |
# RotaryEmbedding is a technique that rotates the input by a learnable angle | |
class LlamaRotaryEmbedding(nn.Module): | |
def __init__(self, dim, base=10000, device=None): # dim is the number of features/dimensions/embeddings in the input, base is a base number for the frequency, device is the device to store the buffer | |
super().__init__() | |
inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2, device=device).float() / dim)) # compute the inverse frequency | |
self.register_buffer("inv_freq", inv_freq) # register the inverse frequency as a buffer | |
def forward(self, x, seq_len): | |
seq_len = seq_len.to(x.device) # convert seq_len to the device of the input | |
t = torch.arange(seq_len, device=x.device) # create a tensor of the sequence length | |
freqs = torch.einsum("i,j->ij", t, self.inv_freq) # compute the frequency by taking the dot product of the sequence length and the inverse frequency | |
emb = torch.cat((freqs, freqs), dim=-1) # concatenate the frequency with itself | |
return emb | |
class LlamaMLP(nn.Module): | |
def __init__(self, dim, hidden_dim): | |
super().__init__() | |
self.gate_proj = nn.Linear(dim, hidden_dim, bias=False) # create the gate projection layer with the input dimension and the hidden dimension | |
self.up_proj = nn.Linear(dim, hidden_dim, bias=False) # create the up projection layer with the input dimension and the hidden dimension | |
self.down_proj = nn.Linear(hidden_dim, dim, bias=False) # create the down projection layer with the hidden dimension and the output dimension | |
self.act_fn = nn.SiLU() # create the activation function | |
def forward(self, x): | |
gated = self.gate_proj(x) # apply the gate projection to the input | |
hidden = self.up_proj(x) # apply the up projection to the input | |
return self.down_proj(self.act_fn(gated * hidden)) # apply the activation function to the gated and hidden values and then apply the down projection | |
class LlamaAttention(nn.Module): | |
def __init__(self, dim, num_heads=8): | |
super().__init__() | |
self.num_heads = num_heads | |
self.head_dim = dim // num_heads | |
self.q_proj = nn.Linear(dim, dim, bias=False) | |
self.k_proj = nn.Linear(dim, dim, bias=False) | |
self.v_proj = nn.Linear(dim, dim, bias=False) | |
self.o_proj = nn.Linear(dim, dim, bias=False) | |
def forward(self, x): | |
batch_size, seq_len, dim = x.size() # [batch_size, seq_len, dim] -> [4, 128, 576] | |
q = self.q_proj(x) | |
k = self.k_proj(x) | |
v = self.v_proj(x) | |
# Split heads | |
q = q.view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2) # [batch_size, num_heads, seq_len, head_dim] | |
k = k.view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2) | |
v = v.view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2) | |
# Scaled dot-product attention | |
scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(self.head_dim) | |
attention = torch.softmax(scores, dim=-1) | |
context = torch.matmul(attention, v) | |
# Combine heads | |
context = context.transpose(1, 2).reshape(batch_size, seq_len, dim) | |
return self.o_proj(context) | |
class LlamaDecoderLayer(nn.Module): | |
def __init__(self, dim, hidden_dim, num_heads): | |
super().__init__() | |
self.self_attn = LlamaAttention(dim, num_heads) | |
self.mlp = LlamaMLP(dim, hidden_dim) | |
self.input_layernorm = LlamaRMSNorm(dim) | |
self.post_attention_layernorm = LlamaRMSNorm(dim) | |
def forward(self, x): | |
residual = x | |
x = self.input_layernorm(x) | |
x = self.self_attn(x) | |
x = x + residual | |
residual = x | |
x = self.post_attention_layernorm(x) | |
x = self.mlp(x) | |
x = x + residual | |
return x | |
class LlamaModel(nn.Module): | |
def __init__(self, vocab_size, dim, num_layers, hidden_dim, num_heads): | |
super().__init__() | |
self.embed_tokens = nn.Embedding(vocab_size, dim) | |
self.layers = nn.ModuleList([ | |
LlamaDecoderLayer(dim, hidden_dim, num_heads) for _ in range(num_layers) | |
]) | |
self.norm = LlamaRMSNorm(dim) | |
self.rotary_emb = LlamaRotaryEmbedding(dim) | |
def forward(self, x): | |
x = self.embed_tokens(x) | |
for layer in self.layers: | |
x = layer(x) | |
return self.norm(x) | |
class LlamaForCausalLM(nn.Module): | |
def __init__(self, vocab_size, dim, num_layers, hidden_dim, num_heads): | |
super().__init__() | |
self.model = LlamaModel(vocab_size, dim, num_layers, hidden_dim, num_heads) | |
self.lm_head = nn.Linear(dim, vocab_size, bias=False) | |
def forward(self, x): | |
x = self.model(x) | |
return self.lm_head(x) | |
def get_model(tokenizer): | |
vocab_size = tokenizer.vocab_size # Use actual tokenizer vocab size | |
return LlamaForCausalLM( | |
vocab_size=vocab_size, | |
dim=576, | |
num_layers=30, | |
hidden_dim=1536, | |
num_heads=8 | |
) | |
# model = get_model() | |
# print(model) | |
import torch | |
from torch.utils.data import DataLoader | |
from datasets import load_dataset | |
from transformers import AutoTokenizer, get_scheduler | |
from torch.optim import AdamW | |
#import wandb | |
import os | |
#from model import get_model | |
#wandb.init(project="smollm-training", name="llama-smollm-corpus") | |
BATCH_SIZE = 8 | |
SEQ_LEN = 256 | |
LEARNING_RATE = 1e-4 | |
EPOCHS = 5 | |
WARMUP_STEPS = 1000 | |
GRADIENT_CLIP_VAL = 1.0 | |
CHECKPOINT_DIR = "checkpoints" | |
os.makedirs(CHECKPOINT_DIR, exist_ok=True) | |
DEVICE = ( | |
"cuda" | |
if torch.cuda.is_available() | |
else "mps" if torch.backends.mps.is_available() else "cpu" | |
) | |
def generate_text( | |
model, tokenizer, prompt, max_length=50, temperature=0.7, top_k=50, device=DEVICE | |
): | |
model.eval() | |
input_ids = tokenizer.encode(prompt, return_tensors="pt").to(device) | |
with torch.no_grad(): | |
for _ in range(max_length): | |
outputs = model(input_ids) | |
next_token_logits = outputs[:, -1, :] / temperature | |
# Apply top-k sampling | |
top_k_logits, top_k_indices = torch.topk(next_token_logits, top_k, dim=-1) | |
probs = torch.softmax(top_k_logits, dim=-1) | |
# Sample from the filtered distribution | |
next_token_idx = torch.multinomial(probs, num_samples=1) | |
next_token = top_k_indices[0, next_token_idx[0]] | |
if next_token.item() == tokenizer.eos_token_id: | |
break | |
input_ids = torch.cat([input_ids, next_token.unsqueeze(0)], dim=1) | |
generated_text = tokenizer.decode(input_ids[0], skip_special_tokens=True) | |
model.train() | |
return generated_text | |
def save_checkpoint(model, optimizer, scheduler, epoch, step, loss, path): | |
torch.save( | |
{ | |
"epoch": epoch, | |
"model_state_dict": model.state_dict(), | |
"optimizer_state_dict": optimizer.state_dict(), | |
"scheduler_state_dict": scheduler.state_dict() if scheduler else None, | |
"loss": loss, | |
"step": step, | |
}, | |
path, | |
) | |
def load_checkpoint(path, model, optimizer, scheduler): | |
if os.path.exists(path): | |
# path = './checkpoints/checkpoint_step_5000.pt' | |
# print(f"Loading checkpoint from {path}") | |
checkpoint = torch.load(path, weights_only=True) | |
model.load_state_dict(checkpoint["model_state_dict"]) | |
optimizer.load_state_dict(checkpoint["optimizer_state_dict"]) | |
if scheduler and checkpoint["scheduler_state_dict"]: | |
scheduler.load_state_dict(checkpoint["scheduler_state_dict"]) | |
return checkpoint["epoch"], checkpoint["step"] | |
return 0, 0 | |
def count_parameters(model): | |
"""Count the number of trainable parameters in the model""" | |
return sum(p.numel() for p in model.parameters() if p.requires_grad) | |
tokenizer = AutoTokenizer.from_pretrained("HuggingFaceTB/cosmo2-tokenizer") | |
if tokenizer.pad_token is None: | |
if tokenizer.eos_token: | |
tokenizer.pad_token = tokenizer.eos_token | |
else: | |
tokenizer.add_special_tokens({"pad_token": "[PAD]"}) | |
tokenizer.resize_token_embeddings(len(tokenizer)) | |
dataset = load_dataset( | |
"HuggingFaceTB/smollm-corpus", "cosmopedia-v2", streaming=True, split="train" | |
) | |
def tokenize_function(examples): | |
return tokenizer( | |
examples["text"], truncation=True, max_length=SEQ_LEN, padding="max_length" | |
) | |
tokenized_dataset = dataset.map(tokenize_function, batched=True) | |
def collate_fn(batch): | |
input_ids = torch.tensor([item["input_ids"] for item in batch], dtype=torch.long) | |
attention_mask = torch.tensor( | |
[item["attention_mask"] for item in batch], dtype=torch.long | |
) | |
labels = input_ids.clone() | |
return {"input_ids": input_ids, "attention_mask": attention_mask, "labels": labels} | |
train_loader = DataLoader( | |
tokenized_dataset, batch_size=BATCH_SIZE, collate_fn=collate_fn | |
) | |
# Initialize model, optimizer, and scheduler | |
model = get_model(tokenizer) | |
model.to(DEVICE) | |
# Print model parameters | |
# total_params = count_parameters(model) | |
# print(f"\nModel Statistics:") | |
# print(f"Total Parameters: {total_params:,}") | |
# print(f"Model Size: {total_params * 4 / (1024 * 1024):.2f} MB") # Assuming float32 (4 bytes) | |
# print(f"Device: {DEVICE}") | |
# print(f"Batch Size: {BATCH_SIZE}") | |
# print(f"Sequence Length: {SEQ_LEN}") | |
# print(f"Learning Rate: {LEARNING_RATE}") | |
# print("-" * 50 + "\n") | |
optimizer = AdamW(model.parameters(), lr=LEARNING_RATE, weight_decay=0.01) | |
lr_scheduler = torch.optim.lr_scheduler.OneCycleLR( | |
optimizer, | |
max_lr=LEARNING_RATE, | |
total_steps=10000, | |
pct_start=0.1, | |
anneal_strategy="cos", | |
cycle_momentum=False, | |
) | |
# Load checkpoint if exists | |
start_epoch, global_step = load_checkpoint( | |
f"{CHECKPOINT_DIR}/latest_checkpoint.pt", model, optimizer, lr_scheduler | |
) | |
# Sample prompts for evaluation | |
sample_prompts = [ | |
"The future of artificial intelligence", | |
"The most important thing in life", | |
"The best way to learn programming", | |
] | |
model.train() | |
try: | |
for epoch in range(start_epoch, EPOCHS): | |
print(f"Epoch {epoch + 1}/{EPOCHS}") | |
for step, batch in enumerate(train_loader, start=global_step): | |
# Move batch to device | |
input_ids = batch["input_ids"].to(DEVICE) | |
attention_mask = batch["attention_mask"].to(DEVICE) | |
labels = batch["labels"].to(DEVICE) | |
# Forward pass | |
outputs = model(input_ids) | |
logits = outputs.view(-1, tokenizer.vocab_size) | |
# Calculate loss with label smoothing | |
loss = torch.nn.functional.cross_entropy( | |
logits, labels.view(-1), label_smoothing=0.1 # Add label smoothing | |
) | |
# Backward pass with gradient clipping | |
optimizer.zero_grad() | |
loss.backward() | |
torch.nn.utils.clip_grad_norm_(model.parameters(), GRADIENT_CLIP_VAL) | |
optimizer.step() | |
lr_scheduler.step() | |
# Logging | |
if step % 10 == 0: | |
print( | |
f"Step {step}, Loss: {loss.item():.4f}, LR: {lr_scheduler.get_last_lr()[0]:.2e}" | |
) | |
#wandb.log( | |
# { | |
# "loss": loss.item(), | |
# "lr": lr_scheduler.get_last_lr()[0], | |
# "step": step, | |
# "epoch": epoch, | |
# } | |
#) | |
# Save checkpoint every 100 steps | |
#if step % 100 == 0: | |
# save_checkpoint( | |
# model, | |
# optimizer, | |
# lr_scheduler, | |
# epoch, | |
# step, | |
# loss.item(), | |
# f"{CHECKPOINT_DIR}/latest_checkpoint.pt", | |
# ) | |
# Also save numbered checkpoint every 1000 steps | |
if step % 1000 == 0: | |
save_checkpoint( | |
model, | |
optimizer, | |
lr_scheduler, | |
epoch, | |
step, | |
loss.item(), | |
f"{CHECKPOINT_DIR}/checkpoint_step.pt", | |
) | |
# Generate sample text every 500 steps with different temperatures | |
if step % 500 == 0: | |
print("\n=== Generating Sample Texts ===") | |
for temp in [0.7, 1.0]: # Try different temperatures | |
for prompt in sample_prompts: | |
generated = generate_text( | |
model, | |
tokenizer, | |
prompt, | |
temperature=temp, | |
max_length=100, # Increased max length | |
) | |
print(f"\nPrompt: {prompt}") | |
print(f"Temperature: {temp}") | |
print(f"Generated: {generated}") | |
#wandb.log( | |
# { | |
# f"generated_text_temp_{temp}_{prompt[:20]}": wandb.Html( | |
# generated | |
# ) | |
# } | |
#) | |
print("\n=== End of Samples ===\n") | |
model.train() | |
# Save epoch checkpoint | |
#save_checkpoint( | |
# model, | |
# optimizer, | |
# lr_scheduler, | |
# epoch, | |
# step, | |
# loss.item(), | |
# f"{CHECKPOINT_DIR}/checkpoint_epoch.pt", | |
#) | |
except KeyboardInterrupt: | |
print("\nTraining interrupted! Saving checkpoint...") | |
save_checkpoint( | |
model, | |
optimizer, | |
lr_scheduler, | |
epoch, | |
step, | |
loss.item(), | |
f"{CHECKPOINT_DIR}/interrupted_checkpoint.pt", | |
) | |
print("Training complete!") | |
#wandb.finish() | |