assitantchatbot / LANGCHAIN_IMPLEMENTATION_GUIDE.md
aghaai's picture
Fix: Downgrade Vite to v6 for Tailwind plugin compatibility
e7abfef
# LangChain Implementation Guide for Advanced Chatbot
## 🎯 **Technology Stack Overview**
### **Core Technologies:**
- **LangChain** - Conversation memory and chain management
- **FAISS** - Vector storage and similarity search
- **OpenAI Embeddings** - Text vectorization
- **SQLAlchemy** - Persistent conversation storage
- **Redis** (optional) - Caching conversation context
### **Architecture Flow:**
```
User Message β†’ LangChain Memory β†’ RAG Retrieval β†’ Context Assembly β†’ LLM Response
```
## πŸš€ **Implementation Status**
### βœ… **Completed Components:**
1. **LangChain Conversation Service** (`services/langchain_conversation_service.py`)
- Module content loading from GPT FINAL FLOW folders
- Vector store creation with FAISS
- Conversation chain with memory
- RAG retrieval from module content
- Database integration for persistent storage
2. **Enhanced Chatbot Service** (`services/chatbot_service.py`)
- LangChain integration
- Fallback to original conversation service
- Module-specific content loading
3. **Database Models** (`models.py`)
- `ConversationMemory` - Stores conversation context
- `CrossModuleMemory` - Shares context across modules
- `ConversationMessage` - Individual message storage
4. **Dependencies** (`requirements.txt`)
- LangChain packages added
- FAISS for vector storage
- ChromaDB for alternative vector store
## πŸ“‹ **Installation Steps**
### **1. Install Dependencies**
```bash
pip install -r requirements.txt
```
### **2. Set Environment Variables**
```bash
# Required
export OPENAI_API_KEY="your_openai_api_key"
export SUPABASE_DB_URL="your_supabase_connection_string"
# Optional
export ENVIRONMENT="production"
export DEBUG="false"
```
### **3. Test the Integration**
```bash
python test_langchain_integration.py
```
## πŸ”§ **Configuration**
### **Module Mapping**
The system maps module IDs to folder names:
```python
module_mapping = {
"offer_clarifier": "1_The Offer Clarifier GPT",
"avatar_creator": "2_Avatar Creator and Empathy Map GPT",
"before_state": "3_Before State Research GPT",
"after_state": "4_After State Research GPT",
"avatar_validator": "5_Avatar Validator GPT",
"trigger_gpt": "6_TriggerGPT",
"epo_builder": "7_EPO Builder GPT - Copy",
"scamper_synthesizer": "8_SCAMPER Synthesizer",
"wildcard_idea": "9_Wildcard Idea Bot",
"concept_crafter": "10_Concept Crafter GPT",
"hook_headline": "11_Hook & Headline GPT",
"campaign_concept": "12_Campaign Concept Generator GPT",
"ideation_injection": "13_Ideation Injection Bot"
}
```
### **Content Loading**
For each module, the system loads:
- **System Prompts** (`System Prompt/*.txt`)
- **RAG Content** (`RAG/*.txt`)
- **Output Templates** (`Output template/*.txt`)
## 🧠 **How It Works**
### **1. Content Processing**
```python
# Load module content
documents = await service.load_module_content("offer_clarifier")
# Create vector store
vector_store = FAISS.from_documents(texts, embeddings)
# Create conversation chain
chain = ConversationalRetrievalChain.from_llm(
llm=llm,
retriever=vector_store.as_retriever(),
memory=memory
)
```
### **2. Message Processing**
```python
# Process user message
result = await chain.ainvoke({
"question": user_message,
"chat_history": []
})
# Extract response and sources
response = result.get("answer")
source_documents = result.get("source_documents")
```
### **3. Memory Management**
- **Conversation History** - Stored in database
- **Context Summary** - AI-generated summaries
- **User Profile** - Extracted user information
- **Cross-Module Memory** - Shared across modules
## πŸ“Š **Features**
### **βœ… Conversation Memory**
- Remembers previous conversations
- Maintains context across sessions
- Stores conversation history in database
### **βœ… RAG (Retrieval Augmented Generation)**
- Loads content from GPT module folders
- Creates vector embeddings for similarity search
- Retrieves relevant content for responses
### **βœ… Context Awareness**
- Understands conversation flow
- Maintains user preferences
- Shares context across modules
### **βœ… Natural Language Processing**
- Detects user intent
- Generates contextual responses
- Handles conversation transitions
## πŸ”„ **Integration with Existing System**
### **Backward Compatibility**
The implementation maintains backward compatibility:
1. **Primary**: LangChain conversation service
2. **Fallback**: Original conversation service
3. **Legacy**: Traditional Q&A mode
### **Database Integration**
- Uses existing database models
- Maintains conversation history
- Supports cross-module memory
## πŸ§ͺ **Testing**
### **Run Integration Tests**
```bash
python test_langchain_integration.py
```
### **Test Individual Components**
```python
# Test content loading
documents = await service.load_module_content("offer_clarifier")
# Test vector store
vector_store = await service.create_vector_store("offer_clarifier")
# Test conversation chain
chain = await service.create_conversation_chain("offer_clarifier", "test_id")
```
## πŸš€ **Deployment**
### **Production Setup**
1. **Install Dependencies**
```bash
pip install -r requirements.txt
```
2. **Set Environment Variables**
```bash
export OPENAI_API_KEY="your_key"
export SUPABASE_DB_URL="your_connection_string"
```
3. **Run Database Migration**
```bash
python setup_database.py
```
4. **Start the Application**
```bash
python main.py
```
### **Hugging Face Deployment**
1. **Set Secrets** in Hugging Face Space
2. **Deploy** the application
3. **Test** the conversational features
## πŸ“ˆ **Performance Optimization**
### **Caching Strategy**
- **Vector Stores** - Cached per module
- **Conversation Chains** - Cached per session
- **Embeddings** - Reused across requests
### **Memory Management**
- **Window Memory** - Last 10 exchanges
- **Summary Memory** - AI-generated summaries
- **Token Management** - Track token usage
## πŸ”§ **Customization**
### **Adding New Modules**
1. **Create folder** in `GPT FINAL FLOW/`
2. **Add content** files (System Prompt, RAG, Output template)
3. **Update mapping** in `LangChainConversationService`
### **Customizing Memory**
```python
# Custom memory configuration
memory = ConversationBufferWindowMemory(
memory_key="chat_history",
return_messages=True,
k=15 # Increase window size
)
```
### **Customizing RAG**
```python
# Custom retriever configuration
retriever = vector_store.as_retriever(
search_type="similarity",
search_kwargs={"k": 5} # Increase results
)
```
## πŸ› **Troubleshooting**
### **Common Issues**
1. **OpenAI API Key Not Set**
```bash
export OPENAI_API_KEY="your_key"
```
2. **Module Content Not Found**
- Check folder structure in `GPT FINAL FLOW/`
- Verify file naming conventions
3. **Vector Store Creation Fails**
- Check OpenAI API key
- Verify content files exist
- Check file encoding (UTF-8)
4. **Database Connection Issues**
- Verify Supabase connection string
- Check database permissions
- Run database setup script
### **Debug Mode**
```python
# Enable verbose logging
logging.basicConfig(level=logging.DEBUG)
# Enable LangChain verbose mode
chain = ConversationalRetrievalChain.from_llm(
llm=llm,
retriever=retriever,
memory=memory,
verbose=True # Enable verbose mode
)
```
## πŸ“š **Next Steps**
### **Immediate Actions**
1. **Install dependencies** and test integration
2. **Configure environment variables**
3. **Run database setup**
4. **Test with sample conversations**
### **Future Enhancements**
1. **Redis Caching** - For better performance
2. **Advanced Memory** - Conversation summary memory
3. **Multi-modal Support** - Images, documents
4. **Real-time Updates** - WebSocket integration
## πŸŽ‰ **Benefits**
### **For Users**
- **Natural Conversations** - More human-like interactions
- **Context Awareness** - Remembers previous conversations
- **Relevant Responses** - Based on module content
- **Smooth Transitions** - Between questions and modules
### **For Developers**
- **Modular Architecture** - Easy to extend
- **Backward Compatibility** - Existing features work
- **Scalable Design** - Handles multiple modules
- **Production Ready** - Database persistence
---
**This implementation provides a robust foundation for advanced conversational AI with proper memory management and context awareness.**