newtestingdanish / main.py
aghaai's picture
refactor: use OPENAI_API_KEY from environment variable everywhere
53b5464
import os
import streamlit as st
from OCR import OCR
from Feedback import Grader
from PDFFeedbackGenerator import PDFFeedbackGenerator
import matplotlib
from io import BytesIO
from streamlit.web.server.websocket_headers import _get_websocket_headers
import re
import time
from pdf2image import convert_from_path
matplotlib.use("Agg") # Non-GUI backend for matplotlib
# Constants
LOGO_PATH = "cslogo.png"
TEMP_DIR = "temp" # Changed from /tmp to relative path
POPPLER_PATH = os.path.join(os.path.dirname(__file__), "poppler", "bin")
# Create temp directory if it doesn't exist
os.makedirs(TEMP_DIR, exist_ok=True)
# Allow iframe embedding and add CORS headers
def custom_get_websocket_headers(*args, **kwargs):
headers = _get_websocket_headers(*args, **kwargs)
headers["X-Frame-Options"] = "ALLOWALL"
headers["Access-Control-Allow-Origin"] = "*"
headers["Access-Control-Allow-Methods"] = "GET, POST, OPTIONS"
headers["Access-Control-Allow-Headers"] = "Content-Type"
return headers
# Apply the override
import streamlit.web.server.websocket_headers
streamlit.web.server.websocket_headers._get_websocket_headers = custom_get_websocket_headers
# Google Cloud credentials
os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = "css-edge-e347b0ed2b9e.json"
# Initialize instances
api_key = os.environ.get("OPENAI_API_KEY")
if not api_key:
raise RuntimeError("OPENAI_API_KEY environment variable not set")
ocr = OCR()
grader = Grader(api_key=api_key)
# Main application logic
def main():
st.sidebar.title("Navigation")
choice = st.sidebar.radio("Steps", ["Upload File", "Generate Feedback"])
if choice == "Upload File":
st.sidebar.markdown("""
### Instructions:
- Prepare your response
- Save as PDF/PNG/JPG
- Upload using the uploader
- Verify extracted text
""")
st.title("Upload File for Processing")
st.header("Step 1: Upload File")
# Start timer for extraction
if 'extraction_start_time' not in st.session_state:
st.session_state['extraction_start_time'] = time.time()
uploaded_files = st.file_uploader(
"Upload up to 15 PDF or Image Files",
type=["pdf", "png", "jpg", "jpeg", "bmp", "gif", "tiff"],
accept_multiple_files=True
)
if uploaded_files:
if len(uploaded_files) > 15:
st.error("You can upload a maximum of 15 files at once.")
else:
extracted_texts = []
for uploaded_file in uploaded_files:
try:
file_path = os.path.join(TEMP_DIR, uploaded_file.name)
with open(file_path, "wb") as f:
f.write(uploaded_file.getbuffer())
st.success(f"File {uploaded_file.name} uploaded successfully!")
is_handwritten = st.radio(
f"File type for {uploaded_file.name}:",
("Computer-Written", "Handwritten"),
index=0,
key=uploaded_file.name
)
if uploaded_file.name.lower().endswith(".pdf"):
extracted_text, accuracy_metrics = ocr.process_pdf_file_with_vision(file_path)
else:
extracted_text, accuracy_metrics = ocr.process_image_with_vision(file_path)
if accuracy_metrics.get("overall_accuracy", 0.0) < 0.6:
st.warning(f"OCR accuracy for {uploaded_file.name} is below 60%. Please upload a clearer image or higher quality file.")
continue
if not extracted_text.strip():
st.warning(f"No text extracted from {uploaded_file.name}")
else:
extracted_texts.append(extracted_text)
except Exception as e:
st.error(f"Error processing file {uploaded_file.name}: {str(e)}")
continue
if not extracted_texts:
st.error("No files with acceptable OCR accuracy. Please upload clearer images or higher quality files.")
else:
combined_text = "\n\n".join(extracted_texts)
st.warning("Verify and edit the combined extracted text from all files below:")
user_text = st.text_area(
"Combined Extracted Text:",
combined_text,
height=400,
key="combined_extracted_text"
)
if st.button("Confirm All Text"):
if user_text.strip():
st.session_state["extracted_text"] = user_text
st.session_state['extraction_end_time'] = time.time()
elapsed_extraction = st.session_state['extraction_end_time'] - st.session_state['extraction_start_time']
st.success(f"All text verified and ready for feedback! (Extraction Time: {elapsed_extraction:.2f} seconds)")
else:
st.error("Text cannot be empty")
elif choice == "Generate Feedback":
st.sidebar.markdown("""
### Instructions:
- Review extracted text
- Enter your name
- Download report
""")
st.title("Feedback and Grading Tool")
st.header("Step 2: Generate Feedback")
extracted_text = st.session_state.get("extracted_text", "")
if not extracted_text.strip():
st.error("No text to process. Please go back and upload files with better quality or confirm the extracted text.")
return
try:
st.write("Generating feedback...")
feedback_start_time = time.time()
structured_feedback = grader.grade_answer_with_gpt(
extracted_text,
"CSS FPSC Guidelines Context"
)
feedback_end_time = time.time()
elapsed_feedback = feedback_end_time - feedback_start_time
st.success(f"Feedback generated! (Feedback Generation Time: {elapsed_feedback:.2f} seconds)")
# Generate rephrased text
rephrased_analysis = grader.rephrase_text_with_gpt(extracted_text)
structured_feedback["rephrased_analysis"] = rephrased_analysis
if not structured_feedback or "sections" not in structured_feedback:
st.error("Error: Invalid feedback format received. Please try again.")
return
st.success("Feedback generated!")
# Display feedback in web view
st.write("### Detailed Feedback")
# Add custom CSS for improved text alignment and presentation
st.markdown("""
<style>
.highlight {
background-color: rgba(255, 255, 0, 0.3);
padding: 0 2px;
}
.feedback-section {
margin: 20px 0;
padding: 18px 20px;
border-radius: 10px;
background-color: #f8f9fa;
border: 1.5px solid #e0e0e0;
box-shadow: 0 2px 8px rgba(44,62,80,0.06);
}
.feedback-header {
font-size: 1.1em;
font-weight: bold;
margin: 15px 0 8px 0;
color: #2c3e50;
padding-bottom: 3px;
border-bottom: 1px solid #e0e0e0;
}
.feedback-content {
margin-left: 20px;
line-height: 1.6;
text-align: justify;
}
.feedback-item {
margin: 8px 0;
padding: 5px 0;
}
.quote-text {
font-style: italic;
color: #34495e;
margin: 10px 0;
padding: 10px;
border-left: 3px solid #3498db;
background-color: #f1f8ff;
}
.section-title {
font-size: 1.4em;
color: #2c3e50;
margin: 15px 0 18px 0;
padding-bottom: 5px;
border-bottom: 2px solid #3498db;
}
.error-type {
color: #e74c3c;
font-weight: bold;
}
.correction {
color: #27ae60;
font-weight: bold;
}
.explanation {
color: #7f8c8d;
font-style: italic;
}
.critical-area {
color: #e67e22;
font-weight: bold;
}
.error-frequency {
margin: 10px 0;
padding: 10px;
background-color: #fff;
border-radius: 5px;
border: 1px solid #e0e0e0;
}
.score-impact {
margin: 10px 0;
padding: 10px;
background-color: #f8f9fa;
border-radius: 5px;
border-left: 3px solid #3498db;
}
</style>
""", unsafe_allow_html=True)
# Essay Structure feedback UI (with explanations for failed criteria)
essay_structure_feedback = structured_feedback.get('essay_structure', {})
st.markdown("<h4 style='margin-bottom:0.5em;'>Essay Structure</h4>", unsafe_allow_html=True)
if not isinstance(essay_structure_feedback, dict):
st.warning(f"Essay structure feedback is not a dict: {essay_structure_feedback}")
else:
for section, criteria in essay_structure_feedback.items():
with st.expander(section, expanded=False):
if not isinstance(criteria, dict):
st.warning(f"Criteria for section '{section}' is not a dict: {criteria}")
continue
for crit, result in criteria.items():
if not isinstance(result, dict):
st.warning(f"Result for criterion '{crit}' in section '{section}' is not a dict: {result}")
continue
passed = result.get('value', False)
explanation = result.get('explanation', '')
icon = 'βœ…' if passed else '❌'
color = '#27ae60' if passed else '#e74c3c'
if not passed and explanation:
st.markdown(f"<div style='margin-bottom:8px;'><b>β€’ {crit}</b> <span style='color:{color};font-size:1.2em;'>{icon}</span> <span style='background:#f8d7da;color:#c0392b;padding:4px 10px;border-radius:8px;margin-left:8px;'>{explanation}</span></div>", unsafe_allow_html=True)
else:
st.markdown(f"<div style='margin-bottom:8px;'><b>β€’ {crit}</b> <span style='color:{color};font-size:1.2em;'>{icon}</span></div>", unsafe_allow_html=True)
# Display AI Evaluation & Score Section
st.write("### AI Evaluation & Score")
for section in structured_feedback["sections"]:
score = section.get("score", 0)
issues = section.get("issues", [])
num_issues = len(issues)
section_name = section.get("name", "")
color = {
"Grammar & Punctuation": "#f8d7da",
"Tone & Formality": "#ffe5b4",
"Sentence Clarity & Structure": "#d6eaff",
"Vocabulary Suggestions": "#d4f8e8"
}.get(section_name, "#f0f0f0")
with st.container():
st.markdown(f"<div style='background:{color};border-radius:12px;padding:18px 20px;margin-bottom:18px;box-shadow:0 2px 8px rgba(44,62,80,0.06);'>", unsafe_allow_html=True)
cols = st.columns([0.7, 0.3])
with cols[0]:
st.markdown(f"<b style='font-size:1.1em'>{section_name}</b>", unsafe_allow_html=True)
with cols[1]:
st.markdown(f"<div style='float:right;'><span style='font-size:1.2em;font-weight:bold;'>{score}%</span></div>", unsafe_allow_html=True)
st.markdown(f"<div style='margin-top:8px;margin-bottom:8px;'><span style='background:#fff3f3;border-radius:8px;padding:4px 12px;color:#c0392b;font-weight:500;'>{num_issues} Issue{'s' if num_issues!=1 else ''}</span></div>", unsafe_allow_html=True)
with st.expander("Show Issues" if num_issues else "No Issues", expanded=False):
if num_issues == 0:
st.write("No issues found in this category.")
else:
for idx, issue in enumerate(issues, 1):
before = issue.get("before", "")
after = issue.get("after", "")
st.markdown(f"<div style='margin-bottom:12px;'><span style='color:#e74c3c;font-weight:bold;'>Before:</span> {before}<br><span style='color:#27ae60;font-weight:bold;'>After:</span> {after}</div>", unsafe_allow_html=True)
st.markdown("</div>", unsafe_allow_html=True)
st.write("---")
# Display Overall Scoring
overall_score = structured_feedback.get("overall_score", 40)
st.markdown("<h4 style='margin-bottom:0.5em;'>Overall Scoring</h4>", unsafe_allow_html=True)
st.markdown(f"""
<div style='background:#fff;border:2px solid #2986f5;border-radius:12px;padding:18px 0 18px 0;margin-bottom:18px;display:flex;align-items:center;justify-content:center;width:340px;'>
<div style='display:flex;align-items:center;justify-content:center;width:100%;'>
<div style='position:relative;width:80px;height:80px;'>
<svg width='80' height='80'>
<circle cx='40' cy='40' r='34' stroke='#e0e0e0' stroke-width='8' fill='none'/>
<circle cx='40' cy='40' r='34' stroke='#2986f5' stroke-width='8' fill='none' stroke-dasharray='213.6' stroke-dashoffset='{213.6 - (overall_score/100)*213.6}' stroke-linecap='round' transform='rotate(-90 40 40)'/>
</svg>
<div style='position:absolute;top:0;left:0;width:80px;height:80px;display:flex;align-items:center;justify-content:center;font-size:1.4em;font-weight:bold;color:#2986f5;'>{overall_score}%</div>
</div>
<div style='margin-left:24px;font-size:1.1em;font-weight:500;color:#222;'>Overall Essay Evaluation</div>
</div>
</div>
""", unsafe_allow_html=True)
# PDF Generation part
user_name = st.text_input("Enter your name:")
if user_name:
try:
pdf_buffer_feedback = BytesIO()
pdf_buffer_rephrased = BytesIO()
pdf_generator_feedback = PDFFeedbackGenerator(
output_path=pdf_buffer_feedback,
logo_path=LOGO_PATH
)
pdf_generator_rephrased = PDFFeedbackGenerator(
output_path=pdf_buffer_rephrased,
logo_path=LOGO_PATH
)
# Feedback PDF (no rephrased text)
pdf_generator_feedback.create_feedback_pdf(
user_name,
structured_feedback
)
pdf_buffer_feedback.seek(0)
# Rephrased Text PDF
pdf_generator_rephrased.create_rephrased_pdf(
user_name,
rephrased_analysis
)
pdf_buffer_rephrased.seek(0)
col1, col2 = st.columns(2)
with col1:
st.download_button(
label="Download Feedback Report (PDF)",
data=pdf_buffer_feedback,
file_name="feedback_report.pdf",
mime="application/pdf",
on_click=lambda: st.session_state.update({"feedback_downloaded": True}),
)
with col2:
st.download_button(
label="Download Rephrased Text Report (PDF)",
data=pdf_buffer_rephrased,
file_name="rephrased_text_report.pdf",
mime="application/pdf",
)
st.success("Reports ready for download!")
except Exception as e:
st.error(f"Error generating PDF: {str(e)}")
else:
st.info("πŸ‘‰ Enter your name to generate the detailed reports")
except Exception as e:
st.error(f"Error generating feedback: {str(e)}")
print(f"Feedback Generation Error: {str(e)}")
if __name__ == "__main__":
main()