|
import re |
|
import transformers |
|
from PIL import Image |
|
from transformers import DonutProcessor, VisionEncoderDecoderModel |
|
import torch |
|
import random |
|
import numpy as np |
|
import gradio as gr |
|
|
|
access_token = "" |
|
|
|
transformers.logging.disable_default_handler() |
|
processor = DonutProcessor.from_pretrained("daquarti/donut-base-sroie", use_auth_token=access_token) |
|
model = VisionEncoderDecoderModel.from_pretrained("daquarti/donut-base-sroie", use_auth_token=access_token) |
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
model.to(device) |
|
|
|
def load_image (f): |
|
with Image.open(f) as img: |
|
a = img.load() |
|
return img.convert('RGB') |
|
|
|
def pred (a): |
|
|
|
|
|
pixel_values = processor(a, return_tensors="pt").pixel_values |
|
task_prompt = "<s>" |
|
decoder_input_ids = processor.tokenizer(task_prompt, add_special_tokens=False, return_tensors="pt").input_ids |
|
|
|
outputs = model.generate( |
|
pixel_values.to(device), |
|
decoder_input_ids=decoder_input_ids.to(device), |
|
max_length=model.decoder.config.max_position_embeddings, |
|
early_stopping=True, |
|
pad_token_id=processor.tokenizer.pad_token_id, |
|
eos_token_id=processor.tokenizer.eos_token_id, |
|
use_cache=True, |
|
num_beams=1, |
|
bad_words_ids=[[processor.tokenizer.unk_token_id]], |
|
return_dict_in_generate=True, |
|
) |
|
prediction = processor.batch_decode(outputs.sequences)[0] |
|
prediction = processor.token2json(prediction) |
|
return str (prediction) |
|
|
|
examples = ['1.jpg', '2.jpg'] |
|
demo = gr.Interface(fn=pred, inputs="image", outputs= "text", examples= examples) |
|
|
|
|
|
demo.launch(share= False) |