delightfulrachel's picture
Update app.py
b73721f verified
import os
import gradio as gr
import json
import plotly.express as px
import pandas as pd
from typing import Tuple, Dict, Optional, List
import logging
logger = logging.getLogger(__name__)
# Import from our modules
from utils import (
validate_apex_syntax, perform_skeptical_evaluation, extract_code_blocks,
format_structured_explanation, format_object_conversion_explanation,
extract_validation_metrics, normalize_metrics, generate_test_cases,
VALIDATION_SCHEMA, B2B_COMMERCE_PATTERNS, logger
)
from api_client import (
all_models, together_models, anthropic_models, call_llm
)
def correct_apex_trigger(model: str, trigger_code: str, progress=None) -> Tuple[str, str, str]:
"""Correct Apex Trigger with skeptical evaluation."""
if progress:
progress(0.1, desc="Validating input...")
# Input validation
if not trigger_code.strip():
return "Please provide Apex Trigger code to correct.", "", ""
if len(trigger_code.strip()) < 50:
return "Code too short to be a valid Apex trigger. Please provide complete code.", "", ""
# Perform initial syntax check
is_valid, syntax_issues = validate_apex_syntax(trigger_code)
if progress:
progress(0.3, desc="Analyzing code structure...")
# Perform skeptical evaluation
evaluation = perform_skeptical_evaluation(trigger_code, "trigger")
# Build comprehensive prompt with structured output format
prompt = f"""
Correct this Apex Trigger for B2B Lightning Experience migration. Be BRIEF and DIRECT.
ORIGINAL CODE:
```apex
{trigger_code}
```
DETECTED ISSUES:
- Syntax Errors: {len(syntax_issues)}
- Security Issues: {len(evaluation['security_concerns'])}
- Performance Issues: {len(evaluation['performance_issues'])}
- B2B Commerce Issues: {len(evaluation['b2b_commerce_issues'])}
PROVIDE EXACTLY THIS FORMAT:
## CORRECTED CODE
```apex
[Put the complete corrected trigger here with inline comments for changes]
```
## KEY CHANGES (bullet points only)
- [Change 1: Brief description]
- [Change 2: Brief description]
- [Maximum 7 bullet points]
## CRITICAL ISSUES FIXED
1. [Most important issue]: [One-line explanation]
2. [Second issue]: [One-line explanation]
3. [Third issue]: [One-line explanation]
## REMAINING WARNINGS
- [Any issues that need manual review]
BE CONCISE. NO VERBOSE EXPLANATIONS. FOCUS ON CODE QUALITY.
"""
if progress:
progress(0.5, desc="Calling AI model...")
response = call_llm(model, prompt, temperature=0.2) # Even lower temperature for consistency
if progress:
progress(0.8, desc="Processing response...")
# Extract code and explanations
code_output = extract_code_blocks(response)
# Validate the corrected code
validation_warnings = []
if code_output:
corrected_valid, corrected_issues = validate_apex_syntax(code_output)
if not corrected_valid:
error_count = len([i for i in corrected_issues if i["type"] == "error"])
warning_count = len([i for i in corrected_issues if i["type"] == "warning"])
validation_warnings.append(f"⚠️ Validation: {error_count} errors, {warning_count} warnings remain")
# Extract structured explanation
explanation = format_structured_explanation(response, code_output)
# Add validation warnings if any
if validation_warnings:
explanation = "\n".join(validation_warnings) + "\n\n" + explanation
# Add test case reference (brief)
explanation += "\n\n**Test Template:** Available in Full Response section"
if progress:
progress(1.0, desc="Complete!")
return response, code_output, explanation
def convert_cc_object(model: str, cc_object_code: str, progress=None) -> Tuple[str, str, str]:
"""Convert CloudCraze Object with skeptical evaluation."""
if progress:
progress(0.1, desc="Validating input...")
# Input validation
if not cc_object_code.strip():
return "Please provide CloudCraze Object code to convert.", "", ""
if len(cc_object_code.strip()) < 30:
return "Code too short to be a valid CloudCraze object. Please provide complete code.", "", ""
if progress:
progress(0.3, desc="Analyzing CloudCraze structure...")
# Check for CloudCraze patterns
import re
has_cc_pattern = bool(re.search(B2B_COMMERCE_PATTERNS["cloudcraze_reference"], cc_object_code))
if not has_cc_pattern:
logger.warning("No obvious CloudCraze patterns found in input")
# Perform evaluation
evaluation = perform_skeptical_evaluation(cc_object_code, "object")
prompt = f"""
Convert this CloudCraze Object to B2B Lightning Experience. Be BRIEF and PRECISE.
CLOUDCRAZE OBJECT:
```
{cc_object_code}
```
PROVIDE EXACTLY THIS FORMAT:
## B2B LEX OBJECT MAPPING
- Source: [CloudCraze object name]
- Target: [B2B LEX object name]
- Migration Complexity: [Low/Medium/High]
## CONVERTED CODE
```apex
[Complete B2B LEX implementation with inline comments]
```
## FIELD MAPPINGS (table format)
| CC Field | B2B Field | Type | Notes |
|----------|-----------|------|-------|
| field1 | newField1 | Text | Required |
| field2 | newField2 | Number | Optional |
## MIGRATION STEPS
1. [Step 1 - one line]
2. [Step 2 - one line]
3. [Maximum 5 steps]
## DATA MIGRATION SCRIPT
```apex
[Brief data migration code if needed, otherwise state "Not Required"]
```
## WARNINGS
- [Any manual steps or considerations]
BE CONCISE. FOCUS ON ACTIONABLE INFORMATION.
"""
if progress:
progress(0.5, desc="Calling AI model...")
response = call_llm(model, prompt, temperature=0.2)
if progress:
progress(0.8, desc="Processing response...")
# Extract code and explanations
code_output = extract_code_blocks(response)
# Extract structured explanation
explanation = format_object_conversion_explanation(response, code_output)
# Add brief test reference
explanation += "\n\n**Test Utilities:** See Full Response for test data creation utilities"
if progress:
progress(1.0, desc="Complete!")
return response, code_output, explanation
def validate_apex_trigger(validation_model: str, original_code: str, corrected_code: str) -> str:
"""Enhanced validation with skeptical evaluation and structured output."""
if not validation_model or not original_code.strip() or not corrected_code.strip():
return "Please provide all required inputs for validation."
# Perform syntax validation on both
orig_valid, orig_issues = validate_apex_syntax(original_code)
corr_valid, corr_issues = validate_apex_syntax(corrected_code)
prompt = f"""
Validate this Apex trigger correction. Be CRITICAL but CONCISE.
ORIGINAL ({len(orig_issues)} issues detected):
```apex
{original_code}
```
CORRECTED ({len(corr_issues)} issues detected):
```apex
{corrected_code}
```
PROVIDE THIS EXACT JSON FORMAT:
```json
{{
"quality_rating": [1-10],
"accuracy": [0.0-1.0],
"completeness": [0.0-1.0],
"best_practices_alignment": [0.0-1.0],
"syntax_validity": [0.0-1.0],
"security_score": [0.0-1.0],
"performance_score": [0.0-1.0],
"errors": [
"Error 1: [specific line/issue]",
"Error 2: [specific line/issue]"
],
"warnings": [
"Warning 1: [potential issue]",
"Warning 2: [potential issue]"
],
"suggestions": [
"Improvement 1: [actionable suggestion]",
"Improvement 2: [actionable suggestion]"
]
}}
```
SCORING CRITERIA:
- quality_rating: Overall code quality (1=terrible, 10=excellent)
- accuracy: Correctness of fixes (0=wrong, 1=perfect)
- completeness: All issues addressed (0=none, 1=all)
- best_practices_alignment: Follows Salesforce standards (0=poor, 1=excellent)
- syntax_validity: No syntax errors (0=many errors, 1=error-free)
- security_score: Security best practices (0=vulnerable, 1=secure)
- performance_score: Efficiency and scalability (0=poor, 1=optimal)
BE HARSH. FIND PROBLEMS. Maximum 3 items per category.
"""
return call_llm(validation_model, prompt, temperature=0.1) # Very low temperature for consistent JSON
def validate_cc_object_conversion(validation_model: str, original_object: str, converted_object: str) -> str:
"""Enhanced validation for CloudCraze object conversion with structured output."""
if not validation_model or not original_object.strip() or not converted_object.strip():
return "Please provide all required inputs for validation."
prompt = f"""
Validate this CloudCraze to B2B LEX conversion. Be CRITICAL and BRIEF.
ORIGINAL CLOUDCRAZE:
```
{original_object}
```
CONVERTED B2B LEX:
```
{converted_object}
```
PROVIDE THIS EXACT JSON FORMAT:
```json
{{
"quality_rating": [1-10],
"accuracy": [0.0-1.0],
"completeness": [0.0-1.0],
"best_practices_alignment": [0.0-1.0],
"syntax_validity": [0.0-1.0],
"security_score": [0.0-1.0],
"performance_score": [0.0-1.0],
"errors": [
"Missing field: [field_name]",
"Wrong mapping: [issue]"
],
"warnings": [
"Data type mismatch: [field]",
"Custom logic not migrated: [what]"
],
"suggestions": [
"Add validation for: [field]",
"Consider indexing: [field]"
]
}}
```
FOCUS ON:
1. Missing field mappings
2. Data type conversions
3. Relationship integrity
4. Custom field handling
5. Performance at scale
BE HARSH. Maximum 3 items per category. Focus on REAL issues.
"""
return call_llm(validation_model, prompt, temperature=0.1)
def create_enhanced_radar_chart(metrics: Optional[Dict[str, float]]) -> Optional[object]:
"""Create an enhanced radar chart with more metrics."""
if not metrics:
return None
# Create data for the radar chart
categories = [
"Quality",
"Accuracy",
"Completeness",
"Best Practices",
"Syntax Valid",
"Security",
"Performance"
]
values = [
metrics.get("quality_rating", 0) / 10, # Normalize to 0-1 scale
metrics.get("accuracy", 0),
metrics.get("completeness", 0),
metrics.get("best_practices_alignment", 0),
metrics.get("syntax_validity", 0),
metrics.get("security_score", 0),
metrics.get("performance_score", 0)
]
# Create a DataFrame for plotting
df = pd.DataFrame({
'Category': categories,
'Value': values
})
# Create the radar chart
fig = px.line_polar(
df, r='Value', theta='Category', line_close=True,
range_r=[0, 1], title="Comprehensive Validation Assessment"
)
fig.update_traces(fill='toself', fillcolor='rgba(0, 100, 255, 0.2)')
fig.update_layout(
polar=dict(
radialaxis=dict(
visible=True,
range=[0, 1]
)
),
showlegend=False,
height=400
)
return fig
def get_theme_styles(theme_choice: str) -> Tuple[str, str, str, str]:
"""Get theme styles for different UI elements."""
themes = {
"Dark": {
"explanation": "background-color: #1e1e1e; color: #e0e0e0; padding: 15px; border-radius: 8px; font-family: 'Inter', sans-serif; line-height: 1.6;",
"code": "background-color: #0d1117; color: #c9d1d9; font-family: 'Fira Code', 'Consolas', monospace; padding: 15px; border-radius: 8px; border: 1px solid #30363d; font-size: 14px; line-height: 1.5;",
"validation": "background-color: #161b22; color: #c9d1d9; padding: 15px; border-radius: 8px; border: 1px solid #30363d;",
"error": "background-color: #3d1418; color: #f85149; padding: 10px; border-radius: 5px; border: 1px solid #f85149;"
},
"Light": {
"explanation": "background-color: #ffffff; color: #24292e; padding: 15px; border-radius: 8px; border: 1px solid #e1e4e8; font-family: 'Inter', sans-serif; line-height: 1.6;",
"code": "background-color: #f6f8fa; color: #24292e; font-family: 'Fira Code', 'Consolas', monospace; padding: 15px; border-radius: 8px; border: 1px solid #e1e4e8; font-size: 14px; line-height: 1.5;",
"validation": "background-color: #f6f8fa; color: #24292e; padding: 15px; border-radius: 8px; border: 1px solid #e1e4e8;",
"error": "background-color: #ffe4e6; color: #d73a49; padding: 10px; border-radius: 5px; border: 1px solid #d73a49;"
}
}
theme = themes.get(theme_choice, themes["Light"])
return (theme["explanation"], theme["code"], theme["explanation"], theme["code"])
# Wrapper functions with proper error handling
def trigger_correction_wrapper(model, code):
"""Wrapper for trigger correction with proper error handling."""
try:
if not model or not code.strip():
return "Please select a model and provide code.", "", "Please provide valid inputs."
# Create dummy progress function since Gradio progress doesn't work in lambda
def dummy_progress(value, desc=""):
pass
return correct_apex_trigger(model, code, progress=dummy_progress)
except Exception as e:
logger.error(f"Trigger correction error: {str(e)}")
error_msg = f"Error processing request: {str(e)}"
return error_msg, "", error_msg
def object_conversion_wrapper(model, code):
"""Wrapper for object conversion with proper error handling."""
try:
if not model or not code.strip():
return "Please select a model and provide code.", "", "Please provide valid inputs."
def dummy_progress(value, desc=""):
pass
return convert_cc_object(model, code, progress=dummy_progress)
except Exception as e:
logger.error(f"Object conversion error: {str(e)}")
error_msg = f"Error processing request: {str(e)}"
return error_msg, "", error_msg
def validate_and_chart_trigger(model, original, corrected):
"""Wrapper for trigger validation with error handling."""
try:
if not model or not original.strip() or not corrected.strip():
return "Please provide all required inputs for validation.", None
validation_text = validate_apex_trigger(model, original, corrected)
metrics = extract_validation_metrics(validation_text)
chart = create_enhanced_radar_chart(metrics) if metrics else None
return validation_text, chart
except Exception as e:
logger.error(f"Trigger validation error: {str(e)}")
return f"Validation error: {str(e)}", None
def validate_and_chart_object(model, original, converted):
"""Wrapper for object validation with error handling."""
try:
if not model or not original.strip() or not converted.strip():
return "Please provide all required inputs for validation.", None
validation_text = validate_cc_object_conversion(model, original, converted)
metrics = extract_validation_metrics(validation_text)
chart = create_enhanced_radar_chart(metrics) if metrics else None
return validation_text, chart
except Exception as e:
logger.error(f"Object validation error: {str(e)}")
return f"Validation error: {str(e)}", None
def main():
"""Main application entry point."""
with gr.Blocks(
title="Salesforce B2B Commerce Migration Assistant",
theme=gr.themes.Soft(primary_hue="blue"),
css="""
.gradio-container {
font-family: 'Inter', -apple-system, BlinkMacSystemFont, sans-serif;
}
.gr-button-primary {
background-color: #0969da !important;
}
.gr-button-primary:hover {
background-color: #0860ca !important;
}
code {
font-family: 'Fira Code', 'Consolas', 'Monaco', monospace;
}
"""
) as app:
gr.Markdown("# πŸš€ Salesforce B2B Commerce Migration Assistant")
gr.Markdown("Advanced tool for migrating CloudCraze code to B2B Lightning Experience with skeptical AI validation.")
# Model selection
with gr.Row():
with gr.Column():
gr.Markdown("### πŸ€– Primary Model")
primary_model_dropdown = gr.Dropdown(
choices=all_models,
value=anthropic_models[0],
label="Select Primary AI Model for Conversion",
info="This model performs the initial code conversion"
)
with gr.Column():
gr.Markdown("### πŸ” Validation Model")
validation_model_dropdown = gr.Dropdown(
choices=all_models,
value=anthropic_models[1],
label="Select Validation AI Model for Review",
info="This model skeptically reviews and validates the output"
)
with gr.Tab("⚑ Apex Trigger Correction"):
gr.Markdown("### Apex Trigger Correction & Optimization")
gr.Markdown("Paste your Apex Trigger code for analysis, correction, and optimization.")
trigger_input = gr.Textbox(
lines=15,
placeholder="Paste your Apex Trigger code here...\n\nExample:\ntrigger AccountTrigger on Account (before insert, before update) {\n // Your trigger logic\n}",
label="Apex Trigger Code",
elem_classes="code-input"
)
with gr.Row():
trigger_button = gr.Button("πŸ”§ Correct & Optimize", variant="primary", size="lg")
copy_code_button = gr.Button("πŸ“‹ Copy Code", variant="secondary")
# Progress indicator
trigger_progress = gr.Textbox(label="Progress", visible=False)
with gr.Accordion("πŸ“„ Full Model Response", open=False):
trigger_full_response = gr.Textbox(
lines=20,
label="Full Model Response",
interactive=False
)
with gr.Row():
with gr.Column():
trigger_explanation = gr.Textbox(
lines=15,
label="πŸ“ Explanation & Analysis",
placeholder="Detailed explanation will appear here...",
interactive=False,
elem_id="trigger_explanation"
)
with gr.Column():
trigger_code_output = gr.Code(
language="python", # Using python highlighting as java is not supported
label="βœ… Corrected Code (Apex)",
value="// Corrected Apex code will appear here",
elem_id="trigger_code_output"
)
gr.Markdown("### 🎯 Validation Results")
with gr.Row():
with gr.Column(scale=2):
trigger_validation_output = gr.Textbox(
lines=20,
label="πŸ” Skeptical Validation Assessment",
placeholder="Validation results will appear here...",
interactive=True,
elem_id="trigger_validation"
)
with gr.Column(scale=1):
trigger_chart = gr.Plot(label="πŸ“Š Validation Metrics")
validate_trigger_button = gr.Button("πŸ” Validate Correction", variant="secondary", size="lg")
# Wire up functionality - INSIDE the main function where UI elements are defined
trigger_button.click(
fn=trigger_correction_wrapper,
inputs=[primary_model_dropdown, trigger_input],
outputs=[trigger_full_response, trigger_code_output, trigger_explanation],
show_progress=True
)
validate_trigger_button.click(
fn=validate_and_chart_trigger,
inputs=[validation_model_dropdown, trigger_input, trigger_code_output],
outputs=[trigger_validation_output, trigger_chart],
show_progress=True
)
copy_code_button.click(
fn=lambda: gr.Info("Code copied! Use Ctrl+C/Cmd+C if automatic copy fails."),
inputs=[],
outputs=[]
)
with gr.Row():
trigger_clear = gr.Button("πŸ—‘οΈ Clear Input")
trigger_clear.click(lambda: "", [], trigger_input)
results_clear = gr.Button("🧹 Clear Results")
results_clear.click(
lambda: ["", "", "", "", None],
[],
[trigger_full_response, trigger_code_output, trigger_explanation, trigger_validation_output, trigger_chart]
)
with gr.Tab("πŸ”„ CloudCraze Object Conversion"):
gr.Markdown("### CloudCraze to B2B Lightning Experience Object Conversion")
gr.Markdown("Convert CloudCraze custom objects to B2B Lightning Experience format.")
object_input = gr.Textbox(
lines=15,
placeholder="Paste your CloudCraze Object definition here...\n\nExample:\nE_Product__c fields, relationships, and custom logic",
label="CloudCraze Object Code",
elem_classes="code-input"
)
with gr.Row():
object_button = gr.Button("πŸ”„ Convert Object", variant="primary", size="lg")
object_copy_code_button = gr.Button("πŸ“‹ Copy Code", variant="secondary")
# Progress indicator
object_progress = gr.Textbox(label="Progress", visible=False)
with gr.Accordion("πŸ“„ Full Model Response", open=False):
object_full_response = gr.Textbox(
lines=20,
label="Full Model Response",
interactive=False
)
with gr.Row():
with gr.Column():
object_explanation = gr.Textbox(
lines=15,
label="πŸ“ Conversion Explanation",
placeholder="Detailed explanation will appear here...",
interactive=False,
elem_id="object_explanation"
)
with gr.Column():
object_code_output = gr.Code(
language="python", # Using python highlighting as java is not supported
label="βœ… Converted Code (B2B LEX)",
value="// Converted B2B Lightning Experience code will appear here",
elem_id="object_code_output"
)
gr.Markdown("### 🎯 Validation Results")
with gr.Row():
with gr.Column(scale=2):
object_validation_output = gr.Textbox(
lines=20,
label="πŸ” Skeptical Validation Assessment",
placeholder="Validation results will appear here...",
interactive=True,
elem_id="object_validation"
)
with gr.Column(scale=1):
object_chart = gr.Plot(label="πŸ“Š Validation Metrics")
validate_object_button = gr.Button("πŸ” Validate Conversion", variant="secondary", size="lg")
# Wire up functionality - INSIDE the main function where UI elements are defined
object_button.click(
fn=object_conversion_wrapper,
inputs=[primary_model_dropdown, object_input],
outputs=[object_full_response, object_code_output, object_explanation],
show_progress=True
)
validate_object_button.click(
fn=validate_and_chart_object,
inputs=[validation_model_dropdown, object_input, object_code_output],
outputs=[object_validation_output, object_chart],
show_progress=True
)
object_copy_code_button.click(
fn=lambda: gr.Info("Code copied! Use Ctrl+C/Cmd+C if automatic copy fails."),
inputs=[],
outputs=[]
)
with gr.Row():
object_clear = gr.Button("πŸ—‘οΈ Clear Input")
object_clear.click(lambda: "", [], object_input)
object_results_clear = gr.Button("🧹 Clear Results")
object_results_clear.click(
lambda: ["", "", "", "", None],
[],
[object_full_response, object_code_output, object_explanation, object_validation_output, object_chart]
)
# UI Preferences
with gr.Accordion("βš™οΈ UI Preferences", open=False):
theme_radio = gr.Radio(
label="🎨 Theme",
choices=["Light", "Dark"],
value="Light"
)
# Comment out theme functionality for now to avoid conflicts
# theme_radio.change(
# fn=get_theme_styles,
# inputs=[theme_radio],
# outputs=[
# trigger_explanation,
# trigger_code_output,
# object_explanation,
# object_code_output
# ]
# )
gr.Markdown("### πŸ“š About This Tool")
gr.Markdown(
"""
**πŸš€ Enhanced Features:**
- **Skeptical AI Evaluation**: Models actively search for syntax errors, security issues, and performance problems
- **Comprehensive Validation**: 7-metric assessment including syntax, security, and performance
- **Edge Case Detection**: Identifies governor limits, bulkification issues, and B2B Commerce pitfalls
- **Test Case Generation**: Automatic test class templates for migrated code
- **Enhanced Error Detection**: Pattern-based syntax validation before AI processing
**πŸ€– Model Roles:**
- **Primary Model**: Performs initial conversion with skeptical analysis
- **Validation Model**: Double-checks work with harsh but fair evaluation
**⚠️ Important**: Always review and test AI-generated code in a sandbox before production deployment.
"""
)
app.launch()
#return app
if __name__ == "__main__":
main()
# print("βœ… Initializing Salesforce Migration Assistant")
# app = main()
# print("βœ… Application instance created")
# if __name__ == "__main__":
# port = int(os.environ.get("PORT", 8080))
# print(f"πŸš€ Starting server on port {port}")
# try:
# app.launch(
# server_name="0.0.0.0",
# server_port=port,
# share=False
# )
# except Exception as e:
# print(f"πŸ”₯ Server failed to start: {str(e)}")
# raise
# print("βœ… Server started successfully")