develops20's picture
Update app.py
f3069a1 verified
raw
history blame
13.5 kB
import gradio as gr
import speech_recognition as sr
import requests
import json
import os
from datetime import datetime, timedelta
import tempfile
import io
import base64
from typing import Optional, Dict, Any
import asyncio
import aiohttp
from dotenv import load_dotenv
# Load environment variables from .env file
load_dotenv()
# Configuration
ELEVENLABS_API_KEY = os.getenv("ELEVENLABS_API_KEY")
GOOGLE_CALENDAR_CREDENTIALS = os.getenv("GOOGLE_CALENDAR_CREDENTIALS")
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
# ElevenLabs configuration
ELEVENLABS_VOICE_ID = "21m00Tcm4TlvDq8ikWAM" # Default voice, can be changed
ELEVENLABS_API_URL = "https://api.elevenlabs.io/v1"
class VoiceAgent:
def __init__(self):
self.recognizer = sr.Recognizer()
# Remove microphone initialization - we'll use Gradio's audio input
async def speech_to_text(self, audio_file) -> str:
"""Convert speech to text using speech_recognition"""
try:
# Handle different audio file types
if audio_file.endswith('.webm') or audio_file.endswith('.wav'):
with sr.AudioFile(audio_file) as source:
audio = self.recognizer.record(source)
text = self.recognizer.recognize_google(audio)
return text
else:
# For other formats, try direct processing
with sr.AudioFile(audio_file) as source:
audio = self.recognizer.record(source)
text = self.recognizer.recognize_google(audio)
return text
except sr.UnknownValueError:
return "Sorry, I couldn't understand the audio. Please try speaking more clearly."
except sr.RequestError as e:
return f"Could not request results from speech recognition service; {e}"
except Exception as e:
return f"Error in speech recognition: {str(e)}"
async def text_to_speech(self, text: str) -> bytes:
"""Convert text to speech using ElevenLabs"""
if not ELEVENLABS_API_KEY:
raise ValueError("ElevenLabs API key not found")
url = f"{ELEVENLABS_API_URL}/text-to-speech/{ELEVENLABS_VOICE_ID}"
headers = {
"Accept": "audio/mpeg",
"Content-Type": "application/json",
"xi-api-key": ELEVENLABS_API_KEY
}
data = {
"text": text,
"model_id": "eleven_monolingual_v1",
"voice_settings": {
"stability": 0.5,
"similarity_boost": 0.5
}
}
async with aiohttp.ClientSession() as session:
async with session.post(url, json=data, headers=headers) as response:
if response.status == 200:
return await response.read()
else:
raise Exception(f"ElevenLabs API error: {response.status}")
async def process_with_mcp(self, user_input: str) -> Dict[str, Any]:
"""Process user input using MCP (Model Context Protocol)"""
# Detect intent
intent = self.detect_intent(user_input)
if intent == "calendar":
return await self.handle_calendar_request(user_input)
else:
return await self.handle_general_question(user_input)
def detect_intent(self, text: str) -> str:
"""Simple intent detection"""
calendar_keywords = ["schedule", "appointment", "meeting", "calendar", "book", "reserve"]
if any(keyword in text.lower() for keyword in calendar_keywords):
return "calendar"
return "general"
async def handle_calendar_request(self, text: str) -> Dict[str, Any]:
"""Handle calendar appointment creation"""
try:
# Extract appointment details using simple parsing
# In a real implementation, you'd use NLP or LLM for better extraction
appointment_data = self.extract_appointment_details(text)
# Create calendar event (simplified - would use Google Calendar API)
event_summary = f"Appointment: {appointment_data.get('title', 'New Meeting')}"
event_time = appointment_data.get('time', 'TBD')
response_text = f"I've scheduled your {event_summary} for {event_time}. Please note: This is a demo - in production, this would create an actual Google Calendar event."
return {
"type": "calendar",
"response": response_text,
"success": True,
"event_data": appointment_data
}
except Exception as e:
return {
"type": "calendar",
"response": f"I encountered an error while scheduling your appointment: {str(e)}",
"success": False
}
def extract_appointment_details(self, text: str) -> Dict[str, str]:
"""Extract appointment details from text (simplified)"""
# This is a basic implementation - in production, use NLP/LLM
details = {
"title": "Meeting",
"time": "Next available slot",
"duration": "30 minutes"
}
# Simple keyword extraction
if "doctor" in text.lower():
details["title"] = "Doctor Appointment"
elif "meeting" in text.lower():
details["title"] = "Meeting"
elif "call" in text.lower():
details["title"] = "Phone Call"
# Extract time mentions (basic)
words = text.lower().split()
for i, word in enumerate(words):
if word in ["tomorrow", "today", "monday", "tuesday", "wednesday", "thursday", "friday"]:
details["time"] = word.capitalize()
break
elif "at" in words and i < len(words) - 1:
if any(char.isdigit() for char in words[i + 1]):
details["time"] = f"at {words[i + 1]}"
break
return details
async def handle_general_question(self, text: str) -> Dict[str, Any]:
"""Handle general questions"""
# Simple responses - in production, integrate with LLM
responses = {
"hello": "Hello! I'm your voice assistant. I can help you schedule appointments or answer questions.",
"how are you": "I'm doing well, thank you! How can I help you today?",
"weather": "I'm a demo assistant focused on calendar management. For weather, I'd need to integrate with a weather API.",
"time": f"The current time is {datetime.now().strftime('%I:%M %p')}",
"default": "I understand you're asking about something. As a demo assistant, I can help you schedule appointments or provide basic information. What would you like to do?"
}
text_lower = text.lower()
response_text = responses.get("default")
for key, response in responses.items():
if key in text_lower:
response_text = response
break
return {
"type": "general",
"response": response_text,
"success": True
}
# Initialize the agent
agent = VoiceAgent()
async def process_voice_input(audio_file):
"""Process voice input and return voice response"""
if audio_file is None:
return None, "Please record some audio first."
try:
# Convert speech to text
text = await agent.speech_to_text(audio_file)
if text.startswith("Error"):
return None, text
# Process with MCP
result = await agent.process_with_mcp(text)
response_text = result["response"]
# Convert response to speech
if ELEVENLABS_API_KEY:
try:
audio_bytes = await agent.text_to_speech(response_text)
# Save to temporary file
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file:
tmp_file.write(audio_bytes)
return tmp_file.name, f"You said: '{text}'\n\nResponse: {response_text}"
except Exception as e:
return None, f"Text-to-speech error: {str(e)}\n\nYou said: '{text}'\nResponse: {response_text}"
else:
return None, f"You said: '{text}'\n\nResponse: {response_text}\n\n(Note: Set ELEVENLABS_API_KEY for voice output)"
except Exception as e:
return None, f"Error processing audio: {str(e)}"
def process_text_input(text_input):
"""Process text input directly"""
if not text_input.strip():
return "Please enter some text."
try:
# Process with MCP
result = asyncio.run(agent.process_with_mcp(text_input))
return result["response"]
except Exception as e:
return f"Error processing text: {str(e)}"
# Create Gradio interface
with gr.Blocks(title="Voice Agent - Gradio MCP Hackathon", theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# 🎀 Voice Agent with MCP
**Hackathon Project**: Gradio Agents & MCP Hackathon
This lightweight voice agent can:
- πŸ—£οΈ Process voice input and respond with voice
- πŸ“… Schedule calendar appointments
- ❓ Answer general questions
- πŸ”§ Uses MCP (Model Context Protocol) for processing
## Setup Instructions:
1. Set `ELEVENLABS_API_KEY` environment variable for voice synthesis
2. Set `GOOGLE_CALENDAR_CREDENTIALS` for calendar integration (optional)
3. Try voice input or type your questions below!
""")
with gr.Tab("🎀 Voice Mode"):
gr.Markdown("**Record your voice using the microphone button below**")
with gr.Row():
with gr.Column():
audio_input = gr.Audio(
sources=["microphone"],
type="filepath",
label="πŸŽ™οΈ Click to record your voice",
format="wav"
)
voice_button = gr.Button("πŸš€ Process Voice Input", variant="primary", size="lg")
with gr.Column():
audio_output = gr.Audio(label="πŸ”Š AI Voice Response")
text_output = gr.Textbox(
label="πŸ“‹ Conversation Log",
lines=8,
interactive=False,
placeholder="Your conversation will appear here..."
)
voice_button.click(
fn=process_voice_input,
inputs=[audio_input],
outputs=[audio_output, text_output]
)
with gr.Tab("πŸ’¬ Text Mode"):
with gr.Row():
with gr.Column():
text_input = gr.Textbox(
label="Type your message",
placeholder="Ask me anything or request to schedule an appointment...",
lines=3
)
text_button = gr.Button("Send Message", variant="primary")
with gr.Column():
text_response = gr.Textbox(
label="AI Response",
lines=6,
interactive=False
)
text_button.click(
fn=process_text_input,
inputs=[text_input],
outputs=[text_response]
)
# Quick action buttons
gr.Markdown("### Quick Actions:")
with gr.Row():
quick_hello = gr.Button("πŸ‘‹ Say Hello")
quick_time = gr.Button("πŸ• What time is it?")
quick_appointment = gr.Button("πŸ“… Schedule appointment tomorrow at 2pm")
quick_hello.click(
fn=lambda: process_text_input("hello"),
outputs=[text_response]
)
quick_time.click(
fn=lambda: process_text_input("what time is it"),
outputs=[text_response]
)
quick_appointment.click(
fn=lambda: process_text_input("schedule an appointment tomorrow at 2pm"),
outputs=[text_response]
)
with gr.Tab("ℹ️ About"):
gr.Markdown("""
## About This Project
This is a hackathon submission for the **Gradio Agents & MCP Hackathon**.
### Features:
- **Voice Input/Output**: Uses speech recognition and ElevenLabs TTS
- **MCP Integration**: Implements Model Context Protocol for intelligent processing
- **Calendar Management**: Can schedule appointments (demo mode)
- **Lightweight**: Optimized for Hugging Face Spaces
### Technologies Used:
- **Gradio**: For the web interface
- **ElevenLabs**: For text-to-speech synthesis
- **MCP**: For intelligent request processing
- **Speech Recognition**: For voice-to-text conversion
### Environment Variables:
- `ELEVENLABS_API_KEY`: Your ElevenLabs API key
- `GOOGLE_CALENDAR_CREDENTIALS`: Google Calendar API credentials (optional)
### Example Interactions:
- "Hello, how are you?"
- "What time is it?"
- "Schedule a doctor appointment for tomorrow at 3pm"
- "Book a meeting with John next Monday"
""")
if __name__ == "__main__":
demo.launch()