|
import torch |
|
import gradio as gr |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer |
|
import textwrap |
|
|
|
model_id = "unsloth/gemma-3n-E2B-it-unsloth-bnb-4bit" |
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
|
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_id, |
|
device_map="cpu", |
|
torch_dtype=torch.float32, |
|
) |
|
|
|
model.eval() |
|
|
|
|
|
def print_response(text: str) -> str: |
|
return "\n".join(textwrap.fill(line, 100) for line in text.split("\n")) |
|
|
|
|
|
def predict_text(system_prompt: str, user_prompt: str) -> str: |
|
messages = [ |
|
{"role": "system", "content": [{"type": "text", "text": system_prompt.strip()}]}, |
|
{"role": "user", "content": [{"type": "text", "text": user_prompt.strip()}]}, |
|
] |
|
|
|
inputs = tokenizer.apply_chat_template( |
|
messages, |
|
add_generation_prompt=True, |
|
tokenize=True, |
|
return_dict=True, |
|
return_tensors="pt" |
|
).to("cpu") |
|
|
|
input_len = inputs["input_ids"].shape[-1] |
|
|
|
with torch.inference_mode(): |
|
output = model.generate( |
|
**inputs, |
|
max_new_tokens=300, |
|
do_sample=False, |
|
use_cache=False |
|
) |
|
|
|
generated = output[0][input_len:] |
|
decoded = tokenizer.decode(generated, skip_special_tokens=True) |
|
return print_response(decoded) |
|
|
|
|
|
demo = gr.Interface( |
|
fn=predict_text, |
|
inputs=[ |
|
gr.Textbox(lines=2, label="System Prompt", value="You are a helpful assistant."), |
|
gr.Textbox(lines=4, label="User Prompt", placeholder="Ask something..."), |
|
], |
|
outputs=gr.Textbox(label="Gemma 3n Response"), |
|
title="Gemma 3n Chat (CPU-friendly)", |
|
description="Lightweight CPU-only chatbot using a quantized Gemma 3n model.", |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |
|
|