Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
from functools import partial | |
import gradio as gr | |
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns | |
import pandas as pd | |
from apscheduler.schedulers.background import BackgroundScheduler | |
# from huggingface_hub import snapshot_download | |
from src.about import ( | |
CITATION_BUTTON_LABEL, | |
CITATION_BUTTON_TEXT, | |
EVALUATION_QUEUE_TEXT, | |
INTRODUCTION_TEXT, | |
LLM_BENCHMARKS_TEXT, | |
TITLE, | |
) | |
from src.datamodel.data import F1Data | |
from src.display.css_html_js import custom_css | |
from src.display.utils import ( | |
# BENCHMARK_COLS, | |
COLS, | |
EVAL_COLS, | |
EVAL_TYPES, | |
AutoEvalColumn, | |
ModelType, | |
fields, | |
WeightType, | |
Precision, | |
) | |
from src.envs import API, REPO_ID, TOKEN, CODE_PROBLEMS_REPO, SUBMISSIONS_REPO, RESULTS_REPO | |
from src.logger import get_logger | |
from src.populate import get_evaluation_queue_df, get_leaderboard_df | |
from src.submission.submit import add_new_solutions | |
logger = get_logger(__name__) | |
SPLIT = "warmup" # TODO temp | |
SKIP_VALIDATION = True # TODO temp | |
def restart_space(): | |
API.restart_space(repo_id=REPO_ID) | |
lbdb = F1Data(cp_ds_name=CODE_PROBLEMS_REPO, sub_ds_name=SUBMISSIONS_REPO, res_ds_name=RESULTS_REPO, split=SPLIT) | |
leaderboard_df = get_leaderboard_df(RESULTS_REPO) | |
logger.info("Initialized LBDB") | |
# ( | |
# finished_eval_queue_df, | |
# running_eval_queue_df, | |
# pending_eval_queue_df, | |
# ) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS) | |
def init_leaderboard(dataframe): | |
if dataframe is None or dataframe.empty: | |
raise ValueError("Leaderboard DataFrame is empty or None.") | |
return Leaderboard( | |
value=dataframe, | |
datatype=[c.type for c in fields(AutoEvalColumn)], | |
select_columns=SelectColumns( | |
default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default], | |
cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden], | |
label="Select Columns to Display:", | |
), | |
search_columns=[AutoEvalColumn.system.name, AutoEvalColumn.system_type.name], | |
hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden], | |
filter_columns=[ | |
ColumnFilter(AutoEvalColumn.system_type.name, type="checkboxgroup", label="Model types"), | |
# ColumnFilter(AutoEvalColumn.precision.name, type="checkboxgroup", label="Precision"), | |
# ColumnFilter( | |
# AutoEvalColumn.params.name, | |
# type="slider", | |
# min=0.01, | |
# max=150, | |
# label="Select the number of parameters (B)", | |
# ), | |
# ColumnFilter(AutoEvalColumn.still_on_hub.name, type="boolean", label="Deleted/incomplete", default=True), | |
], | |
bool_checkboxgroup_label="Hide models", | |
interactive=False, | |
) | |
# Display image using Markdown | |
# banner = "" | |
demo = gr.Blocks(css=custom_css) | |
with demo: | |
gr.Image( | |
"assets/banner.png", | |
interactive=False, | |
show_label=False, | |
show_download_button=False, | |
container=False, | |
) | |
# gr.Markdown(banner) | |
gr.HTML( | |
""" | |
<style> | |
body { | |
background-color: #121212; | |
color: white; | |
margin: 0; /* Reset browser default */ | |
} | |
/* Outer container margin & spacing */ | |
.gradio-container { | |
max-width: 1100px; | |
margin: 2rem auto; /* top/bottom spacing + horizontal centering */ | |
padding: 2rem; /* inner spacing */ | |
background-color: rgba(0, 0, 0, 0.6); /* optional: semi-transparent panel */ | |
border-radius: 12px; /* rounded corners */ | |
} | |
</style> | |
""" | |
) | |
gr.HTML(TITLE) | |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") | |
with gr.Tabs(elem_classes="tab-buttons") as tabs: | |
with gr.TabItem("π FormulaOne Leaderboard", elem_id="formulaone-leaderboar-tab-table", id=0): | |
leaderboard = init_leaderboard(leaderboard_df) | |
# with gr.TabItem("π About", elem_id="llm-benchmark-tab-table", id=1): | |
# logger.info("Tab about") | |
# gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text") | |
with gr.TabItem("π Submit here! ", elem_id="llm-benchmark-tab-table", id=2): | |
logger.info("Tab submission") | |
with gr.Column(): | |
with gr.Row(): | |
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text") | |
# with gr.Column(): | |
# with gr.Accordion( | |
# f"β Finished Evaluations ({len(finished_eval_queue_df)})", | |
# open=False, | |
# ): | |
# with gr.Row(): | |
# finished_eval_table = gr.components.Dataframe( | |
# value=finished_eval_queue_df, | |
# headers=EVAL_COLS, | |
# datatype=EVAL_TYPES, | |
# row_count=5, | |
# ) | |
# with gr.Accordion( | |
# f"π Running Evaluation Queue ({len(running_eval_queue_df)})", | |
# open=False, | |
# ): | |
# with gr.Row(): | |
# running_eval_table = gr.components.Dataframe( | |
# value=running_eval_queue_df, | |
# headers=EVAL_COLS, | |
# datatype=EVAL_TYPES, | |
# row_count=5, | |
# ) | |
# with gr.Accordion( | |
# f"β³ Pending Evaluation Queue ({len(pending_eval_queue_df)})", | |
# open=False, | |
# ): | |
# with gr.Row(): | |
# pending_eval_table = gr.components.Dataframe( | |
# value=pending_eval_queue_df, | |
# headers=EVAL_COLS, | |
# datatype=EVAL_TYPES, | |
# row_count=5, | |
# ) | |
with gr.Row(): | |
gr.Markdown("# βοΈβ¨ Submit your solutions here!", elem_classes="markdown-text") | |
with gr.Row(): | |
with gr.Column(): | |
system_name_textbox = gr.Textbox(label=AutoEvalColumn.system.name) | |
org_textbox = gr.Textbox(label=AutoEvalColumn.organization.name) | |
# revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main") | |
sys_type_dropdown = gr.Dropdown( | |
choices=[t.to_str(" ") for t in ModelType], | |
label=AutoEvalColumn.system_type.name, | |
multiselect=False, | |
value=ModelType.LLM.to_str(" "), | |
interactive=True, | |
) | |
# with gr.Column(): | |
submission_file = gr.File(label="JSONL solutions file", file_types=[".jsonl"]) | |
# precision = gr.Dropdown( | |
# choices=[i.value.name for i in Precision if i != Precision.Unknown], | |
# label="Precision", | |
# multiselect=False, | |
# value="float16", | |
# interactive=True, | |
# ) | |
# weight_type = gr.Dropdown( | |
# choices=[i.value.name for i in WeightType], | |
# label="Weights type", | |
# multiselect=False, | |
# value="Original", | |
# interactive=True, | |
# ) | |
# base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)") | |
logger.info("Submit button") | |
submit_button = gr.Button("Submit") | |
submission_result = gr.Markdown() | |
def add_solution_cbk(system_name, org, sys_type, submission_path): | |
return add_new_solutions( | |
lbdb, system_name, org, sys_type, submission_path, skip_validation=SKIP_VALIDATION | |
) | |
submit_button.click( | |
add_solution_cbk, | |
[ | |
system_name_textbox, | |
org_textbox, | |
sys_type_dropdown, | |
submission_file, | |
], | |
submission_result, | |
) | |
with gr.Row(): | |
logger.info("Citation") | |
with gr.Accordion(CITATION_BUTTON_LABEL, open=False): | |
gr.Code( | |
value=CITATION_BUTTON_TEXT.strip(), | |
elem_id="citation-block", | |
) | |
# citation_button = gr.Textbox( | |
# value=CITATION_BUTTON_TEXT, | |
# # label=CITATION_BUTTON_LABEL, | |
# lines=20, | |
# elem_id="citation-button", | |
# show_copy_button=True, | |
# ) | |
logger.info("Scheduler") | |
scheduler = BackgroundScheduler() | |
scheduler.add_job(restart_space, "interval", seconds=1800) | |
scheduler.start() | |
logger.info("Launch") | |
demo.queue(default_concurrency_limit=40).launch() | |
logger.info("Done") | |