Spaces:
Runtime error
Runtime error
import torch | |
import torch.nn as nn | |
import torchvision.transforms as transforms | |
import gradio as gr | |
from PIL import Image | |
# Define the neural network model | |
class Net(nn.Module): | |
def __init__(self): | |
super(Net, self).__init__() | |
self.fc1 = nn.Linear(28 * 28, 128) | |
self.fc2 = nn.Linear(128, 64) | |
self.fc3 = nn.Linear(64, 10) | |
def forward(self, x): | |
x = x.view(-1, 28 * 28) # Flatten the input | |
x = torch.relu(self.fc1(x)) | |
x = torch.relu(self.fc2(x)) | |
x = self.fc3(x) | |
return torch.log_softmax(x, dim=1) | |
# Load the trained model | |
model = Net() | |
try: | |
model.load_state_dict(torch.load('mnist_model.pth', map_location=torch.device('cpu'))) | |
except Exception as e: | |
print(f"Error loading model: {e}") | |
model.eval() | |
# Define the transform to preprocess the input image | |
transform = transforms.Compose([ | |
transforms.Grayscale(num_output_channels=1), | |
transforms.Resize((28, 28)), | |
transforms.ToTensor(), | |
transforms.Normalize((0.5,), (0.5,)) | |
]) | |
# Define the prediction function | |
def predict(image): | |
image = transform(image).unsqueeze(0) # Add batch dimension | |
with torch.no_grad(): | |
output = model(image) | |
prediction = torch.argmax(output, dim=1).item() | |
return prediction | |
# Create the Gradio interface | |
iface = gr.Interface( | |
fn=predict, | |
inputs=gr.Image(shape=(28, 28), image_mode='L', invert_colors=False), | |
outputs="label", | |
live=True | |
) | |
# Launch the Gradio interface | |
if __name__ == "__main__": | |
iface.launch() | |