Mandelmem / mandelmem /renormalization.py
Kossisoroyce's picture
Upload 10 files
c05fcc5 verified
"""
Renormalization and compression system for MandelMem.
Handles periodic compression, merging, and summarization of memories.
"""
import torch
import torch.nn as nn
import numpy as np
from typing import List, Dict, Any, Tuple, Optional
from dataclasses import dataclass
import time
from collections import defaultdict
from .quadtree import QuadTree, Tile, MemoryItem
@dataclass
class CompressionResult:
"""Result of compression operation."""
items_merged: int
items_summarized: int
items_promoted: int
items_pruned: int
compression_ratio: float
quality_preserved: float
class MemorySummarizer(nn.Module):
"""Neural network for creating compact memory sketches."""
def __init__(self, embedding_dim: int = 768, sketch_dim: int = 256):
super().__init__()
self.embedding_dim = embedding_dim
self.sketch_dim = sketch_dim
# Encoder for creating sketches
self.sketch_encoder = nn.Sequential(
nn.Linear(embedding_dim, embedding_dim // 2),
nn.ReLU(),
nn.Linear(embedding_dim // 2, sketch_dim),
nn.Tanh()
)
# Decoder for reconstructing from sketches
self.sketch_decoder = nn.Sequential(
nn.Linear(sketch_dim, embedding_dim // 2),
nn.ReLU(),
nn.Linear(embedding_dim // 2, embedding_dim),
nn.Tanh()
)
def create_sketch(self, vectors: torch.Tensor) -> torch.Tensor:
"""Create compact sketch from multiple vectors."""
if vectors.dim() == 1:
vectors = vectors.unsqueeze(0)
# Average pooling followed by compression
pooled = torch.mean(vectors, dim=0, keepdim=True)
sketch = self.sketch_encoder(pooled)
return sketch.squeeze(0)
def reconstruct_from_sketch(self, sketch: torch.Tensor) -> torch.Tensor:
"""Reconstruct vector from sketch."""
if sketch.dim() == 1:
sketch = sketch.unsqueeze(0)
reconstructed = self.sketch_decoder(sketch)
return reconstructed.squeeze(0)
def compute_reconstruction_loss(self, original: torch.Tensor,
reconstructed: torch.Tensor) -> float:
"""Compute reconstruction quality."""
mse_loss = torch.nn.functional.mse_loss(original, reconstructed)
cosine_sim = torch.nn.functional.cosine_similarity(
original.unsqueeze(0), reconstructed.unsqueeze(0)
).item()
return mse_loss.item(), cosine_sim
class RenormalizationEngine:
"""Main engine for memory compression and renormalization."""
def __init__(self, quadtree: QuadTree, summarizer: MemorySummarizer,
merge_threshold: float = 0.9, sketch_threshold: int = 100):
self.quadtree = quadtree
self.summarizer = summarizer
self.merge_threshold = merge_threshold
self.sketch_threshold = sketch_threshold
# Track renormalization history
self.renorm_history: Dict[str, List[Dict[str, Any]]] = defaultdict(list)
def renormalize_tile(self, tile: Tile, preserve_quality: bool = True) -> CompressionResult:
"""Perform full renormalization on a single tile."""
start_time = time.time()
initial_count = len(tile.get_all_items())
# Step 1: Merge near-duplicate slots
merged_count = self._merge_duplicates(tile)
# Step 2: Summarize long tail into sketches
summarized_count = self._create_sketches(tile)
# Step 3: Promote stable short-term items
promoted_count = self._promote_stable_items(tile)
# Step 4: Prune consistently unstable entries
pruned_count = self._prune_unstable_items(tile)
# Step 5: Update attractor
self._update_attractor_post_renorm(tile)
final_count = len(tile.get_all_items())
compression_ratio = final_count / initial_count if initial_count > 0 else 1.0
# Measure quality preservation if requested
quality_preserved = 1.0
if preserve_quality:
quality_preserved = self._measure_quality_preservation(tile)
result = CompressionResult(
items_merged=merged_count,
items_summarized=summarized_count,
items_promoted=promoted_count,
items_pruned=pruned_count,
compression_ratio=compression_ratio,
quality_preserved=quality_preserved
)
# Record renormalization
self._record_renormalization(tile, result, time.time() - start_time)
return result
def _merge_duplicates(self, tile: Tile) -> int:
"""Merge near-duplicate items in slots."""
if len(tile.slots) < 2:
return 0
merged_count = 0
items_to_remove = set()
# Compare all pairs of items
for i, item1 in enumerate(tile.slots):
if i in items_to_remove:
continue
for j, item2 in enumerate(tile.slots[i+1:], i+1):
if j in items_to_remove:
continue
# Calculate similarity
similarity = torch.cosine_similarity(
item1.vector.unsqueeze(0),
item2.vector.unsqueeze(0)
).item()
if similarity > self.merge_threshold:
# Merge items
merged_item = self._merge_items(item1, item2)
tile.slots[i] = merged_item
items_to_remove.add(j)
merged_count += 1
# Remove merged items
tile.slots = [item for i, item in enumerate(tile.slots)
if i not in items_to_remove]
return merged_count
def _merge_items(self, item1: MemoryItem, item2: MemoryItem) -> MemoryItem:
"""Merge two similar memory items."""
# Weighted average of vectors based on stability
w1 = item1.stability_score
w2 = item2.stability_score
total_weight = w1 + w2
if total_weight > 0:
merged_vector = (w1 * item1.vector + w2 * item2.vector) / total_weight
else:
merged_vector = (item1.vector + item2.vector) / 2
# Combine content (keep more important one)
if item1.metadata.get('importance', 0.5) >= item2.metadata.get('importance', 0.5):
primary_content = item1.content
primary_meta = item1.metadata.copy()
else:
primary_content = item2.content
primary_meta = item2.metadata.copy()
# Update metadata
primary_meta['merged_from'] = [item1.content[:50], item2.content[:50]]
primary_meta['merge_timestamp'] = time.time()
return MemoryItem(
vector=merged_vector,
content=primary_content,
metadata=primary_meta,
timestamp=max(item1.timestamp, item2.timestamp),
stability_score=max(item1.stability_score, item2.stability_score),
access_count=item1.access_count + item2.access_count
)
def _create_sketches(self, tile: Tile) -> int:
"""Create sketches for long-tail items."""
if len(tile.slots) < self.sketch_threshold:
return 0
# Sort by access frequency and stability
sorted_items = sorted(tile.slots,
key=lambda x: (x.access_count, x.stability_score),
reverse=True)
# Keep top items, sketch the rest
keep_count = self.sketch_threshold // 2
to_keep = sorted_items[:keep_count]
to_sketch = sorted_items[keep_count:]
if not to_sketch:
return 0
# Create sketches for groups of similar items
sketch_groups = self._group_for_sketching(to_sketch)
sketched_count = 0
for group in sketch_groups:
if len(group) > 1:
# Create sketch
vectors = torch.stack([item.vector for item in group])
sketch = self.summarizer.create_sketch(vectors)
# Create sketch item
sketch_content = f"[SKETCH of {len(group)} items: " + \
", ".join([item.content[:20] for item in group[:3]]) + \
("..." if len(group) > 3 else "") + "]"
sketch_meta = {
'type': 'sketch',
'original_count': len(group),
'sketch_timestamp': time.time(),
'original_items': [item.content[:50] for item in group]
}
sketch_item = MemoryItem(
vector=sketch,
content=sketch_content,
metadata=sketch_meta,
timestamp=max(item.timestamp for item in group),
stability_score=np.mean([item.stability_score for item in group])
)
to_keep.append(sketch_item)
sketched_count += len(group)
tile.slots = to_keep
return sketched_count
def _group_for_sketching(self, items: List[MemoryItem],
similarity_threshold: float = 0.7) -> List[List[MemoryItem]]:
"""Group similar items for sketching."""
groups = []
ungrouped = items.copy()
while ungrouped:
# Start new group with first ungrouped item
current_group = [ungrouped.pop(0)]
# Find similar items to add to group
i = 0
while i < len(ungrouped):
item = ungrouped[i]
# Check similarity with group centroid
group_vectors = torch.stack([g_item.vector for g_item in current_group])
group_centroid = torch.mean(group_vectors, dim=0)
similarity = torch.cosine_similarity(
item.vector.unsqueeze(0),
group_centroid.unsqueeze(0)
).item()
if similarity > similarity_threshold:
current_group.append(ungrouped.pop(i))
else:
i += 1
groups.append(current_group)
return groups
def _promote_stable_items(self, tile: Tile) -> int:
"""Promote stable items from buffer to slots."""
promoted_count = 0
items_to_promote = []
for item in tile.buffer:
# Check if item has become stable through repetition
if (item.access_count >= 3 and
item.stability_score > 0.6 and
len(tile.slots) < tile.max_slots):
items_to_promote.append(item)
# Promote items
for item in items_to_promote:
tile.buffer.remove(item)
tile.slots.append(item)
promoted_count += 1
return promoted_count
def _prune_unstable_items(self, tile: Tile) -> int:
"""Remove consistently unstable items."""
pruned_count = 0
current_time = time.time()
# Prune from buffer
stable_buffer = []
for item in tile.buffer:
age = current_time - item.timestamp
if (item.stability_score < 0.2 and
age > tile.half_life and
item.access_count < 2):
pruned_count += 1
else:
stable_buffer.append(item)
tile.buffer = stable_buffer
# Prune from plastic band
stable_plastic = []
for item in tile.plastic:
if item.stability_score > 0.3 or item.access_count >= 2:
stable_plastic.append(item)
else:
pruned_count += 1
tile.plastic = stable_plastic
return pruned_count
def _update_attractor_post_renorm(self, tile: Tile):
"""Update tile attractor after renormalization."""
all_items = tile.get_all_items()
if not all_items:
return
# Weighted average based on stability and access
total_weight = 0
weighted_sum = torch.zeros_like(tile.attractor)
for item in all_items:
weight = item.stability_score * (1 + np.log(1 + item.access_count))
weighted_sum += weight * item.vector
total_weight += weight
if total_weight > 0:
tile.attractor = weighted_sum / total_weight
def _measure_quality_preservation(self, tile: Tile) -> float:
"""Measure how well renormalization preserved retrieval quality."""
# This is a simplified quality measure
# In practice, you'd want to test retrieval performance before/after
all_items = tile.get_all_items()
if not all_items:
return 1.0
# Check diversity of remaining items
if len(all_items) < 2:
return 0.5
similarities = []
for i, item1 in enumerate(all_items):
for item2 in all_items[i+1:]:
sim = torch.cosine_similarity(
item1.vector.unsqueeze(0),
item2.vector.unsqueeze(0)
).item()
similarities.append(sim)
# Good quality = diverse items (low average similarity)
avg_similarity = np.mean(similarities)
diversity_score = 1.0 - avg_similarity
return max(0.0, min(1.0, diversity_score))
def _record_renormalization(self, tile: Tile, result: CompressionResult, duration: float):
"""Record renormalization event for tracking."""
record = {
'timestamp': time.time(),
'duration': duration,
'result': result,
'tile_stats': {
'total_items': len(tile.get_all_items()),
'slots': len(tile.slots),
'buffer': len(tile.buffer),
'plastic': len(tile.plastic)
}
}
self.renorm_history[tile.tile_id].append(record)
tile.stats.last_renorm = record['timestamp']
def schedule_renormalization(self, cadence_hours: int = 24,
write_threshold: int = 10000) -> List[str]:
"""Schedule tiles for renormalization based on criteria."""
current_time = time.time()
tiles_to_renorm = []
for tile_id, tile in self.quadtree.tiles.items():
# Check time-based criterion
time_since_renorm = current_time - tile.stats.last_renorm
time_criterion = time_since_renorm > (cadence_hours * 3600)
# Check write-based criterion
write_criterion = tile.stats.write_count > write_threshold
# Check capacity criterion
capacity_criterion = (len(tile.slots) >= tile.max_slots * 0.9 or
len(tile.buffer) >= tile.max_buffer * 0.9)
if time_criterion or write_criterion or capacity_criterion:
tiles_to_renorm.append(tile_id)
return tiles_to_renorm
def get_compression_stats(self) -> Dict[str, Any]:
"""Get overall compression statistics."""
total_renorms = sum(len(history) for history in self.renorm_history.values())
if total_renorms == 0:
return {'message': 'No renormalizations performed yet'}
# Aggregate statistics
total_merged = sum(
record['result'].items_merged
for history in self.renorm_history.values()
for record in history
)
total_sketched = sum(
record['result'].items_summarized
for history in self.renorm_history.values()
for record in history
)
avg_compression_ratio = np.mean([
record['result'].compression_ratio
for history in self.renorm_history.values()
for record in history
])
avg_quality = np.mean([
record['result'].quality_preserved
for history in self.renorm_history.values()
for record in history
])
return {
'total_renormalizations': total_renorms,
'total_items_merged': total_merged,
'total_items_sketched': total_sketched,
'average_compression_ratio': avg_compression_ratio,
'average_quality_preserved': avg_quality,
'tiles_with_history': len(self.renorm_history)
}