Spaces:
Runtime error
Runtime error
import spaces | |
import gradio as gr | |
import torch | |
from string import punctuation | |
import re | |
from parler_tts import ParlerTTSForConditionalGeneration | |
from transformers import AutoTokenizer, AutoFeatureExtractor, set_seed | |
from num2words import num2words | |
device = "cuda:0" if torch.cuda.is_available() else "cpu" | |
torch_dtype = torch.bfloat16 | |
assert device == "cuda:0", "You really do not want to run this in a CPU" | |
# attn_implementation = "flash_attention_2" | |
# compilation_mode = "reduce-overhead" | |
# max_input_length_tokens = 64 # Note: Text tokens | |
max_output_length_tokens = 128 * 15 # Note: Audio tokens, ~128 per sec | |
repo_id = "parler-tts/parler-tts-mini-multilingual-v1.1" | |
model = ParlerTTSForConditionalGeneration.from_pretrained( | |
repo_id, | |
torch_dtype=torch_dtype, | |
# attn_implementation=attn_implementation, | |
attn_implementation="eager", | |
device_map=device, | |
) | |
text_tokenizer = AutoTokenizer.from_pretrained(repo_id) | |
description_tokenizer = AutoTokenizer.from_pretrained("google/flan-t5-large") | |
feature_extractor = AutoFeatureExtractor.from_pretrained(repo_id) | |
SAMPLE_RATE = feature_extractor.sampling_rate | |
SEED = 42 | |
default_text = "Entender e responder em audio é outro nível" | |
default_description = "Sophia's voice is monotone yet slightly fast in delivery, with a very close recording that almost has no background noise." | |
examples = [ | |
[ | |
"Entender e responder em audio é outro nível", | |
"a woman with a slightly low- pitched voice speaks slowly in a clear and close- sounding environment, but her delivery is quite monotone.", | |
], | |
[ | |
"Entender e responder em audio é outro nível", | |
"Sophia's voice is monotone yet slightly fast in delivery, with a very close recording that almost has no background noise.", | |
], | |
[ | |
"isso é uma solução que teria muito valor pra nós", | |
"Sophia's voice is monotone yet slightly fast in delivery, with a very close recording that almost has no background noise.", | |
], | |
[ | |
"isso é uma solução que teria muito valor pra nós", | |
"Nicholas's voice is monotone yet slightly fast in delivery, with a very close recording that almost has no background noise.", | |
], | |
[ | |
"As vezes tem uns sotaques meio bizarros, claro", | |
"Nicholas's voice is monotone yet slightly fast in delivery, with a very close recording that almost has no background noise.", | |
], | |
[ | |
"As vezes tem uns sotaques meio bizarros, claro", | |
"a man speaks slowly in a distant- sounding environment with a clean audio quality, delivering his message in a monotone voice at a moderate pitch. ", | |
], | |
[ | |
"Mas em geral foi bem bom", | |
"a man speaks slowly in a distant- sounding environment with a clean audio quality, delivering his message in a monotone voice at a moderate pitch. ", | |
], | |
[ | |
"Mas em geral foi bem bom", | |
"A female speaker delivers a slightly expressive and animated speech with a moderate speed and pitch. The recording is of very high quality, with the speaker's voice sounding clear and very close up.", | |
], | |
] | |
NUMBER_PATTERN = re.compile(r"\b(?P<moeda>R[S\$]\s*)?(?P<numero>\d+([\,\._]\d+)?)\b") | |
ABBREVIATION_PATTERN = r"\b[A-Z][A-Z\.]+\b" | |
def preprocess(text: str): | |
text = text.strip() | |
text = text.replace("-", " ") | |
def separate_abb(chunk): | |
chunk = chunk.replace(".", "") | |
return " ".join(chunk) | |
for number in re.finditer(NUMBER_PATTERN, text): | |
before = number.string[slice(*number.span())] | |
after = num2words(number.group("numero").replace(',', '.'), lang="pt_BR", to="currency" if number.group("moeda") else "cardinal") | |
text = text.replace(before, after, 1) | |
for abv in re.findall(ABBREVIATION_PATTERN, text): | |
if abv in text: | |
text = text.replace(abv, separate_abb(abv), 1) | |
if text[-1] not in punctuation: | |
text = f"{text}." | |
return text.strip() | |
def gen_tts(text, description): | |
inputs = description_tokenizer(description.strip(), return_tensors="pt").to(device) | |
prompt = text_tokenizer(preprocess(text), return_tensors="pt").to(device) | |
set_seed(SEED) | |
generation = model.generate( | |
input_ids=inputs.input_ids, | |
prompt_input_ids=prompt.input_ids, | |
attention_mask=inputs.attention_mask, | |
prompt_attention_mask=prompt.attention_mask, | |
do_sample=True, | |
temperature=1.0, | |
min_new_tokens=10, | |
max_new_tokens=max_output_length_tokens, | |
) | |
audio_arr = generation.to(torch.float32).cpu().numpy().squeeze() # type: ignore | |
return (SAMPLE_RATE, audio_arr) | |
css = """ | |
#share-btn-container { | |
display: flex; | |
padding-left: 0.5rem !important; | |
padding-right: 0.5rem !important; | |
background-color: #000000; | |
justify-content: center; | |
align-items: center; | |
border-radius: 9999px !important; | |
width: 13rem; | |
margin-top: 10px; | |
margin-left: auto; | |
flex: unset !important; | |
} | |
#share-btn { | |
all: initial; | |
color: #ffffff; | |
font-weight: 600; | |
cursor: pointer; | |
font-family: 'IBM Plex Sans', sans-serif; | |
margin-left: 0.5rem !important; | |
padding-top: 0.25rem !important; | |
padding-bottom: 0.25rem !important; | |
right:0; | |
} | |
#share-btn * { | |
all: unset !important; | |
} | |
#share-btn-container div:nth-child(-n+2){ | |
width: auto !important; | |
min-height: 0px !important; | |
} | |
#share-btn-container .wrap { | |
display: none !important; | |
} | |
""" | |
with gr.Blocks(css=css) as block: | |
gr.HTML( | |
""" | |
<div style="text-align: center; max-width: 700px; margin: 0 auto;"> | |
<div style="display: inline-flex; align-items: center; gap: 0.8rem; font-size: 1.75rem;"> | |
<h1 style="font-weight: 900; margin-bottom: 7px; line-height: normal;"> | |
Multilingual Parler-TTS 1.1 🗣️ | |
</h1> | |
</div> | |
</div> | |
""" | |
) | |
gr.HTML( | |
"""<p><a href="https://github.com/huggingface/parler-tts">Parler-TTS</a> is a training and inference library for | |
high-fidelity text-to-speech (TTS) models.</p> | |
<p>This <a href="https://huggingface.co/parler-tts/parler-tts-mini-multilingual-v1.1">multilingual model</a> supports French, Spanish, Italian, Portuguese, Polish, German, Dutch, and English. It generates high-quality speech with features that can be controlled using a simple text prompt.</p> | |
<p>By default, Parler-TTS generates 🎲 random voice characteristics. To ensure 🎯 <b>speaker consistency</b> across generations, try to use consistent descriptions in your prompts.</p>""" | |
) | |
gr.HTML( | |
"""<p>Baseado em <a href="https://huggingface.co/spaces/PHBJT/multi_parler_tts">PHBJT/multi_parler_tts</a>, atualizado para usar o modelo 1.1 e alterado para usar `num2words` para processar números em Português Brasileiro.</p>""" | |
) | |
with gr.Row(): | |
with gr.Column(): | |
gradio_input_text = gr.Textbox( | |
label="Input Text", lines=2, value=default_text | |
) | |
gradio_description = gr.Textbox( | |
label="Voice Description", lines=2, value=default_description | |
) | |
generate_button = gr.Button("Generate Audio", variant="primary") | |
with gr.Column(): | |
audio_out = gr.Audio(label="Parler-TTS generation", type="numpy", show_download_button=True) | |
generate_button.click( | |
fn=gen_tts, inputs=[gradio_input_text, gradio_description], outputs=[audio_out] | |
) | |
gr.Examples( | |
examples=examples, | |
fn=gen_tts, | |
inputs=[gradio_input_text, gradio_description], | |
outputs=[audio_out], | |
cache_examples=True, | |
) | |
gr.HTML( | |
"""<p>Tips for ensuring good generation: | |
<ul> | |
<li>Include the term "very clear audio" to generate the highest quality audio, and "very noisy audio" for high levels of background noise</li> | |
<li>Punctuation can be used to control the prosody of the generations</li> | |
<li>The remaining speech features (gender, speaking rate, pitch and reverberation) can be controlled directly through the prompt</li> | |
</ul> | |
</p>""" | |
) | |
block.queue() | |
block.launch(share=True) | |