morris-bot / test_finetuned_model.py
eusholli's picture
Upload folder using huggingface_hub
599c2c0 verified
"""
Test script to evaluate the fine-tuned model quality
"""
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
from peft import PeftModel
import logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
def load_finetuned_model():
"""Load the fine-tuned model with LoRA adapters"""
base_model_name = "HuggingFaceH4/zephyr-7b-beta"
adapter_path = "models/lora_adapters"
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(base_model_name)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
# Load base model
base_model = AutoModelForCausalLM.from_pretrained(
base_model_name,
torch_dtype=torch.float16,
device_map="auto" if torch.cuda.is_available() else None,
low_cpu_mem_usage=True
)
# Load LoRA adapters
model = PeftModel.from_pretrained(base_model, adapter_path)
# Move to MPS if available
if torch.backends.mps.is_available():
model = model.to("mps")
return model, tokenizer
def generate_text(model, tokenizer, prompt, max_length=500):
"""Generate text using the fine-tuned model"""
# Format as chat
messages = [
{"role": "system", "content": "You are Iain Morris, a witty British writer known for sharp observations about modern life, technology, and culture."},
{"role": "user", "content": prompt}
]
# Apply chat template
formatted_prompt = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
# Tokenize
inputs = tokenizer(formatted_prompt, return_tensors="pt")
if torch.backends.mps.is_available():
inputs = {k: v.to("mps") for k, v in inputs.items()}
# Generate
with torch.no_grad():
outputs = model.generate(
**inputs,
max_new_tokens=max_length,
do_sample=True,
temperature=0.7,
top_p=0.9,
pad_token_id=tokenizer.eos_token_id
)
# Decode
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
# Extract just the assistant's response
if "<|assistant|>" in generated_text:
response = generated_text.split("<|assistant|>")[-1].strip()
else:
response = generated_text[len(formatted_prompt):].strip()
return response
def main():
"""Test the fine-tuned model with sample prompts"""
logger.info("Loading fine-tuned model...")
try:
model, tokenizer = load_finetuned_model()
logger.info("Model loaded successfully!")
# Test prompts
test_prompts = [
"Write about the absurdity of modern dating apps",
"Describe a typical day working from home",
"What's your take on social media influencers?",
"Write about the experience of trying to be healthy in modern society"
]
print("\n" + "="*60)
print("FINE-TUNED MODEL OUTPUT SAMPLES")
print("="*60)
for i, prompt in enumerate(test_prompts, 1):
print(f"\n--- Test {i}: {prompt} ---")
try:
response = generate_text(model, tokenizer, prompt)
print(f"\nResponse:\n{response}")
print("-" * 40)
except Exception as e:
print(f"Error generating response: {e}")
print("\n" + "="*60)
print("EVALUATION COMPLETE")
print("="*60)
except Exception as e:
logger.error(f"Error loading model: {e}")
print("\nModel testing failed. This might be because:")
print("1. The model files weren't saved correctly")
print("2. There's a compatibility issue")
print("3. Insufficient memory")
print(f"\nLoss of 1.988 is generally good for fine-tuning!")
print("For comparison:")
print("- Loss > 3.0: Poor quality, needs more training")
print("- Loss 2.0-3.0: Decent quality, room for improvement")
print("- Loss 1.5-2.0: Good quality (your model is here!)")
print("- Loss < 1.5: Very good, but watch for overfitting")
if __name__ == "__main__":
main()