Spaces:
Sleeping
Sleeping
""" | |
Test script to evaluate the fine-tuned model quality | |
""" | |
import torch | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
from peft import PeftModel | |
import logging | |
logging.basicConfig(level=logging.INFO) | |
logger = logging.getLogger(__name__) | |
def load_finetuned_model(): | |
"""Load the fine-tuned model with LoRA adapters""" | |
base_model_name = "HuggingFaceH4/zephyr-7b-beta" | |
adapter_path = "models/lora_adapters" | |
# Load tokenizer | |
tokenizer = AutoTokenizer.from_pretrained(base_model_name) | |
if tokenizer.pad_token is None: | |
tokenizer.pad_token = tokenizer.eos_token | |
# Load base model | |
base_model = AutoModelForCausalLM.from_pretrained( | |
base_model_name, | |
torch_dtype=torch.float16, | |
device_map="auto" if torch.cuda.is_available() else None, | |
low_cpu_mem_usage=True | |
) | |
# Load LoRA adapters | |
model = PeftModel.from_pretrained(base_model, adapter_path) | |
# Move to MPS if available | |
if torch.backends.mps.is_available(): | |
model = model.to("mps") | |
return model, tokenizer | |
def generate_text(model, tokenizer, prompt, max_length=500): | |
"""Generate text using the fine-tuned model""" | |
# Format as chat | |
messages = [ | |
{"role": "system", "content": "You are Iain Morris, a witty British writer known for sharp observations about modern life, technology, and culture."}, | |
{"role": "user", "content": prompt} | |
] | |
# Apply chat template | |
formatted_prompt = tokenizer.apply_chat_template( | |
messages, | |
tokenize=False, | |
add_generation_prompt=True | |
) | |
# Tokenize | |
inputs = tokenizer(formatted_prompt, return_tensors="pt") | |
if torch.backends.mps.is_available(): | |
inputs = {k: v.to("mps") for k, v in inputs.items()} | |
# Generate | |
with torch.no_grad(): | |
outputs = model.generate( | |
**inputs, | |
max_new_tokens=max_length, | |
do_sample=True, | |
temperature=0.7, | |
top_p=0.9, | |
pad_token_id=tokenizer.eos_token_id | |
) | |
# Decode | |
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
# Extract just the assistant's response | |
if "<|assistant|>" in generated_text: | |
response = generated_text.split("<|assistant|>")[-1].strip() | |
else: | |
response = generated_text[len(formatted_prompt):].strip() | |
return response | |
def main(): | |
"""Test the fine-tuned model with sample prompts""" | |
logger.info("Loading fine-tuned model...") | |
try: | |
model, tokenizer = load_finetuned_model() | |
logger.info("Model loaded successfully!") | |
# Test prompts | |
test_prompts = [ | |
"Write about the absurdity of modern dating apps", | |
"Describe a typical day working from home", | |
"What's your take on social media influencers?", | |
"Write about the experience of trying to be healthy in modern society" | |
] | |
print("\n" + "="*60) | |
print("FINE-TUNED MODEL OUTPUT SAMPLES") | |
print("="*60) | |
for i, prompt in enumerate(test_prompts, 1): | |
print(f"\n--- Test {i}: {prompt} ---") | |
try: | |
response = generate_text(model, tokenizer, prompt) | |
print(f"\nResponse:\n{response}") | |
print("-" * 40) | |
except Exception as e: | |
print(f"Error generating response: {e}") | |
print("\n" + "="*60) | |
print("EVALUATION COMPLETE") | |
print("="*60) | |
except Exception as e: | |
logger.error(f"Error loading model: {e}") | |
print("\nModel testing failed. This might be because:") | |
print("1. The model files weren't saved correctly") | |
print("2. There's a compatibility issue") | |
print("3. Insufficient memory") | |
print(f"\nLoss of 1.988 is generally good for fine-tuning!") | |
print("For comparison:") | |
print("- Loss > 3.0: Poor quality, needs more training") | |
print("- Loss 2.0-3.0: Decent quality, room for improvement") | |
print("- Loss 1.5-2.0: Good quality (your model is here!)") | |
print("- Loss < 1.5: Very good, but watch for overfitting") | |
if __name__ == "__main__": | |
main() | |