File size: 16,770 Bytes
bbf45d0
 
 
961c6fe
b06975a
c0b7e37
 
961c6fe
 
97da54a
c0b7e37
afd7356
b06975a
7064a74
4517d15
 
961c6fe
59d14c6
afd7356
961c6fe
afd7356
 
 
d858aa5
97da54a
f38cb18
 
 
f0e2fd8
f38cb18
 
d858aa5
afd7356
 
 
c0b7e37
 
 
961c6fe
97da54a
 
 
 
 
961c6fe
f38cb18
961c6fe
9c451ee
f38cb18
 
 
 
 
 
4517d15
b06975a
 
 
 
97da54a
 
4517d15
f38cb18
 
97da54a
4517d15
 
f38cb18
b06975a
 
961c6fe
b06975a
0c6bf95
f0e2fd8
961c6fe
 
f0e2fd8
9c451ee
 
 
 
f0e2fd8
961c6fe
9c451ee
4517d15
961c6fe
 
bbf45d0
 
6504db8
ae21931
6504db8
 
535bf1f
 
f9d96a7
535bf1f
 
6504db8
 
 
 
 
 
535bf1f
6504db8
0421d9a
 
535bf1f
0421d9a
ae21931
 
 
961c6fe
f0e2fd8
d858aa5
eec69ec
 
 
98b7de8
f0e2fd8
23d71de
9062ccf
 
 
23d71de
59d14c6
 
47e0cf9
bf675e1
6504db8
8327f21
 
 
 
 
 
23d71de
8327f21
 
 
72bf03d
f38cb18
 
9062ccf
 
 
 
23d71de
59d14c6
afd7356
f0e2fd8
961c6fe
f0e2fd8
 
c0b7e37
ae21931
c0b7e37
ae21931
c0b7e37
db85dcc
 
 
 
 
 
 
 
 
 
 
 
 
ae21931
db85dcc
 
 
 
 
 
59d14c6
 
 
 
23d71de
 
59d14c6
961c6fe
b72bb50
 
b06975a
b72bb50
961c6fe
afd7356
961c6fe
b72bb50
fa2c2d2
b06975a
 
fa2c2d2
f38cb18
 
 
 
 
4517d15
961c6fe
 
b72bb50
 
c0b7e37
b72bb50
 
 
 
 
 
 
 
 
 
 
 
 
f38cb18
 
b72bb50
 
 
 
f38cb18
b72bb50
 
 
 
4d0811f
961c6fe
f38cb18
961c6fe
b72bb50
d858aa5
b06975a
961c6fe
 
b06975a
f0e2fd8
4517d15
 
 
 
f38cb18
 
 
 
 
 
 
 
 
 
9c451ee
b06975a
961c6fe
 
 
afd7356
961c6fe
b06975a
961c6fe
f0e2fd8
d858aa5
4517d15
961c6fe
 
b72bb50
0c6bf95
b72bb50
0c6bf95
b72bb50
47e0cf9
afd7356
bbf45d0
961c6fe
 
f38cb18
f0e2fd8
bbf45d0
 
 
d858aa5
b72bb50
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
import gradio as gr
import pandas as pd
import plotly.express as px
import time
from datasets import load_dataset
# Using the stable, community-built RangeSlider component
from gradio_rangeslider import RangeSlider

# --- Constants ---
PARAM_CHOICES = ['< 1B', '1B', '5B', '12B', '32B', '64B', '128B', '256B', '> 500B']
PARAM_CHOICES_DEFAULT_INDICES = (0, len(PARAM_CHOICES) - 1)

TOP_K_CHOICES = list(range(5, 51, 5))
HF_DATASET_ID = "evijit/modelverse_daily_data"
TAG_FILTER_CHOICES = [ "Audio & Speech", "Time series", "Robotics", "Music", "Video", "Images", "Text", "Biomedical", "Sciences" ]
PIPELINE_TAGS = [ 'text-generation', 'text-to-image', 'text-classification', 'text2text-generation', 'audio-to-audio', 'feature-extraction', 'image-classification', 'translation', 'reinforcement-learning', 'fill-mask', 'text-to-speech', 'automatic-speech-recognition', 'image-text-to-text', 'token-classification', 'sentence-similarity', 'question-answering', 'image-feature-extraction', 'summarization', 'zero-shot-image-classification', 'object-detection', 'image-segmentation', 'image-to-image', 'image-to-text', 'audio-classification', 'visual-question-answering', 'text-to-video', 'zero-shot-classification', 'depth-estimation', 'text-ranking', 'image-to-video', 'multiple-choice', 'unconditional-image-generation', 'video-classification', 'text-to-audio', 'time-series-forecasting', 'any-to-any', 'video-text-to-text', 'table-question-answering' ]


def load_models_data():
    overall_start_time = time.time()
    print(f"Attempting to load dataset from Hugging Face Hub: {HF_DATASET_ID}")
    try:
        dataset_dict = load_dataset(HF_DATASET_ID)
        df = dataset_dict[list(dataset_dict.keys())[0]].to_pandas()
        if 'params' in df.columns:
            # IMPORTANT CHANGE: Fill NaN/coerce errors with -1 to signify unknown size
            # This aligns with the utility function's return of -1.0 for unknown sizes.
            df['params'] = pd.to_numeric(df['params'], errors='coerce').fillna(-1)
        else:
            # If 'params' column doesn't exist, assume all are unknown
            df['params'] = -1
        msg = f"Successfully loaded dataset in {time.time() - overall_start_time:.2f}s."
        print(msg)
        return df, True, msg
    except Exception as e:
        err_msg = f"Failed to load dataset. Error: {e}"
        print(err_msg)
        return pd.DataFrame(), False, err_msg

def get_param_range_values(param_range_labels):
    min_label, max_label = param_range_labels
    min_val = 0.0 if '<' in min_label else float(min_label.replace('B', ''))
    max_val = float('inf') if '>' in max_label else float(max_label.replace('B', ''))
    return min_val, max_val

def make_treemap_data(df, count_by, top_k=25, tag_filter=None, pipeline_filter=None, param_range=None, skip_orgs=None, include_unknown_param_size=True):
    if df is None or df.empty: return pd.DataFrame()
    filtered_df = df.copy()

    # New: Filter based on unknown parameter size
    # If include_unknown_param_size is False, exclude models where params is -1 (unknown)
    if not include_unknown_param_size and 'params' in filtered_df.columns:
        filtered_df = filtered_df[filtered_df['params'] != -1]

    col_map = { "Audio & Speech": "is_audio_speech", "Music": "has_music", "Robotics": "has_robot", "Biomedical": "is_biomed", "Time series": "has_series", "Sciences": "has_science", "Video": "has_video", "Images": "has_image", "Text": "has_text" }
    if tag_filter and tag_filter in col_map and col_map[tag_filter] in filtered_df.columns:
        filtered_df = filtered_df[filtered_df[col_map[tag_filter]]]
    if pipeline_filter and "pipeline_tag" in filtered_df.columns:
        filtered_df = filtered_df[filtered_df["pipeline_tag"].astype(str) == pipeline_filter]
    if param_range:
        min_params, max_params = get_param_range_values(param_range)
        is_default_range = (param_range[0] == PARAM_CHOICES[0] and param_range[1] == PARAM_CHOICES[-1])
        # Apply parameter range filter only if it's not the default (all range) AND params column exists
        # This filter will naturally exclude -1 if the min_params is >= 0, as it should.
        if not is_default_range and 'params' in filtered_df.columns:
            if min_params is not None: filtered_df = filtered_df[filtered_df['params'] >= min_params]
            if max_params is not None and max_params != float('inf'): filtered_df = filtered_df[filtered_df['params'] < max_params]

    if skip_orgs and len(skip_orgs) > 0 and "organization" in filtered_df.columns:
        filtered_df = filtered_df[~filtered_df["organization"].isin(skip_orgs)]
    if filtered_df.empty: return pd.DataFrame()
    if count_by not in filtered_df.columns: filtered_df[count_by] = 0.0
    filtered_df[count_by] = pd.to_numeric(filtered_df[count_by], errors='coerce').fillna(0.0)
    org_totals = filtered_df.groupby("organization")[count_by].sum().nlargest(top_k, keep='first')
    top_orgs_list = org_totals.index.tolist()
    treemap_data = filtered_df[filtered_df["organization"].isin(top_orgs_list)][["id", "organization", count_by]].copy()
    treemap_data["root"] = "models"
    return treemap_data

def create_treemap(treemap_data, count_by, title=None):
    if treemap_data.empty:
        fig = px.treemap(names=["No data matches filters"], parents=[""], values=[1])
        fig.update_layout(title="No data matches the selected filters", margin=dict(t=50, l=25, r=25, b=25))
        return fig
    fig = px.treemap(treemap_data, path=["root", "organization", "id"], values=count_by, title=title, color_discrete_sequence=px.colors.qualitative.Plotly)
    fig.update_layout(margin=dict(t=50, l=25, r=25, b=25))
    fig.update_traces(textinfo="label+value+percent root", hovertemplate="<b>%{label}</b><br>%{value:,} " + count_by + "<br>%{percentRoot:.2%} of total<extra></extra>")
    return fig

# --- FINAL, CORRECTED CSS ---
custom_css = """
/* Hide the extra UI elements from the RangeSlider component */
#param-slider-wrapper .head,
#param-slider-wrapper div[data-testid="range-slider"] > span {
    display: none !important;
}
/* 
  THIS IS THE KEY FIX:
  We target all the individual component containers (divs with class .block)
  that are *direct children* of our custom-classed group.
  
  This removes the "box-in-a-box" effect by making the inner component
  containers transparent. The parent gr.Group now acts as the single card,
  which is exactly what we want.
*/
.model-parameters-group > .block {
    background: none !important;
    border: none !important;
    box-shadow: none !important;
}
"""

with gr.Blocks(title="🤗 ModelVerse Explorer", fill_width=True, css=custom_css) as demo:
    models_data_state = gr.State(pd.DataFrame())
    loading_complete_state = gr.State(False)
    
    with gr.Row():
        gr.Markdown("# 🤗 ModelVerse Explorer")

    with gr.Row():
        with gr.Column(scale=1):
            
            # This section remains un-grouped for a consistent flat look
            count_by_dropdown = gr.Dropdown(label="Metric", choices=[("Downloads (last 30 days)", "downloads"), ("Downloads (All Time)", "downloadsAllTime"), ("Likes", "likes")], value="downloads")
            filter_choice_radio = gr.Radio(label="Filter Type", choices=["None", "Tag Filter", "Pipeline Filter"], value="None")
            
            tag_filter_dropdown = gr.Dropdown(label="Select Tag", choices=TAG_FILTER_CHOICES, value=None, visible=False)
            pipeline_filter_dropdown = gr.Dropdown(label="Select Pipeline Tag", choices=PIPELINE_TAGS, value=None, visible=False)
            
            # This group's styling will be modified by the custom CSS
            with gr.Group(elem_classes="model-parameters-group"):
                gr.Markdown("<div style='font-weight: 500;'>Model Parameters</div>")
                param_range_slider = RangeSlider(
                    minimum=0,
                    maximum=len(PARAM_CHOICES) - 1,
                    value=PARAM_CHOICES_DEFAULT_INDICES,
                    step=1,
                    label=None,
                    show_label=False,
                    elem_id="param-slider-wrapper"
                )
                param_range_display = gr.Markdown(f"Range: `{PARAM_CHOICES[0]}` to `{PARAM_CHOICES[-1]}`")
                # New: Checkbox for including unknown parameter sizes
                include_unknown_params_checkbox = gr.Checkbox(label="Include models with unknown parameter size", value=True)
            
            # This section remains un-grouped
            top_k_dropdown = gr.Dropdown(label="Number of Top Organizations", choices=TOP_K_CHOICES, value=25)
            skip_orgs_textbox = gr.Textbox(label="Organizations to Skip (comma-separated)", value="TheBloke,MaziyarPanahi,unsloth,modularai,Gensyn,bartowski")
            
            generate_plot_button = gr.Button(value="Generate Plot", variant="primary", interactive=False)

        with gr.Column(scale=3):
            plot_output = gr.Plot()
            status_message_md = gr.Markdown("Initializing...")
            data_info_md = gr.Markdown("")
    
    def update_param_display(value: tuple):
        min_idx, max_idx = int(value[0]), int(value[1])
        return f"Range: `{PARAM_CHOICES[min_idx]}` to `{PARAM_CHOICES[max_idx]}`"
    
    # New function to toggle the unknown params checkbox interactivity
    def _toggle_unknown_params_checkbox(param_range_indices):
        min_idx, max_idx = int(param_range_indices[0]), int(param_range_indices[1])
        is_default_range = (min_idx == PARAM_CHOICES_DEFAULT_INDICES[0] and 
                            max_idx == PARAM_CHOICES_DEFAULT_INDICES[1])
        
        # If a specific range is selected (not the default all-inclusive range), disable the checkbox
        # and uncheck it to ensure consistency.
        if not is_default_range:
            return gr.update(interactive=False, value=False) # Disable and uncheck
        else:
            return gr.update(interactive=True) # Enable
            
    param_range_slider.change(update_param_display, param_range_slider, param_range_display)
    # Connect the new toggle function to the param_range_slider's change event
    param_range_slider.change(
        fn=_toggle_unknown_params_checkbox, 
        inputs=[param_range_slider], 
        outputs=[include_unknown_params_checkbox]
    )

    def _update_button_interactivity(is_loaded_flag): return gr.update(interactive=is_loaded_flag)
    loading_complete_state.change(fn=_update_button_interactivity, inputs=loading_complete_state, outputs=generate_plot_button)

    def _toggle_filters_visibility(choice): 
        return gr.update(visible=choice == "Tag Filter"), gr.update(visible=choice == "Pipeline Filter")
    filter_choice_radio.change(fn=_toggle_filters_visibility, inputs=filter_choice_radio, outputs=[tag_filter_dropdown, pipeline_filter_dropdown])

    ## CHANGE: Renamed and modified ui_load_data_controller to also generate the initial plot
    def load_and_generate_initial_plot(progress=gr.Progress()):
        progress(0, desc=f"Loading dataset '{HF_DATASET_ID}'...")
        # --- Part 1: Data Loading ---
        try:
            current_df, load_success_flag, status_msg_from_load = load_models_data()
            if load_success_flag:
                progress(0.5, desc="Processing data...")
                date_display = "Pre-processed (date unavailable)"
                if 'data_download_timestamp' in current_df.columns and pd.notna(current_df['data_download_timestamp'].iloc[0]):
                    ts = pd.to_datetime(current_df['data_download_timestamp'].iloc[0], utc=True)
                    date_display = ts.strftime('%B %d, %Y, %H:%M:%S %Z')
                # Count models where params is not -1 (known size)
                param_count = (current_df['params'] != -1).sum() if 'params' in current_df.columns else 0
                unknown_param_count = (current_df['params'] == -1).sum() if 'params' in current_df.columns else 0

                data_info_text = f"### Data Information\n- Source: `{HF_DATASET_ID}`\n- Status: {status_msg_from_load}\n- Total models loaded: {len(current_df):,}\n- Models with known parameter counts: {param_count:,}\n- Models with unknown parameter counts: {unknown_param_count:,}\n- Data as of: {date_display}\n"
            else:
                data_info_text = f"### Data Load Failed\n- {status_msg_from_load}"
        except Exception as e:
            status_msg_from_load = f"An unexpected error occurred: {str(e)}"
            data_info_text = f"### Critical Error\n- {status_msg_from_load}"
            load_success_flag = False
            current_df = pd.DataFrame()
            print(f"Critical error in load_and_generate_initial_plot: {e}")

        # --- Part 2: Generate Initial Plot ---
        progress(0.6, desc="Generating initial plot...")
        # Get default values directly from the UI component definitions
        default_metric = "downloads"
        default_filter_type = "None"
        default_tag = None
        default_pipeline = None
        default_param_indices = PARAM_CHOICES_DEFAULT_INDICES
        default_k = 25
        default_skip_orgs = "TheBloke,MaziyarPanahi,unsloth,modularai,Gensyn,bartowski"
        # New default: include unknown params initially (matches checkbox default)
        default_include_unknown_params = True 

        # Reuse the existing controller function for plotting
        initial_plot, initial_status = ui_generate_plot_controller(
            default_metric, default_filter_type, default_tag, default_pipeline, 
            default_param_indices, default_k, default_skip_orgs, default_include_unknown_params, current_df, progress
        )
        
        # Return all the necessary updates for the UI
        return current_df, load_success_flag, data_info_text, initial_status, initial_plot

    def ui_generate_plot_controller(metric_choice, filter_type, tag_choice, pipeline_choice, 
                                   param_range_indices, k_orgs, skip_orgs_input, include_unknown_param_size_flag, df_current_models, progress=gr.Progress()):
        if df_current_models is None or df_current_models.empty:
            return create_treemap(pd.DataFrame(), metric_choice, "Error: Model Data Not Loaded"), "Model data is not loaded. Cannot generate plot."
        
        progress(0.1, desc="Preparing data...")
        tag_to_use = tag_choice if filter_type == "Tag Filter" else None
        pipeline_to_use = pipeline_choice if filter_type == "Pipeline Filter" else None
        orgs_to_skip = [org.strip() for org in skip_orgs_input.split(',') if org.strip()]
        
        min_label = PARAM_CHOICES[int(param_range_indices[0])]
        max_label = PARAM_CHOICES[int(param_range_indices[1])]
        param_labels_for_filtering = [min_label, max_label]
        
        treemap_df = make_treemap_data(
            df_current_models, 
            metric_choice, 
            k_orgs, 
            tag_to_use, 
            pipeline_to_use, 
            param_labels_for_filtering, 
            orgs_to_skip, 
            include_unknown_param_size_flag # Pass the new flag
        )
        
        progress(0.7, desc="Generating plot...")
        title_labels = {"downloads": "Downloads (last 30 days)", "downloadsAllTime": "Downloads (All Time)", "likes": "Likes"}
        chart_title = f"HuggingFace Models - {title_labels.get(metric_choice, metric_choice)} by Organization"
        plotly_fig = create_treemap(treemap_df, metric_choice, chart_title)
        
        if treemap_df.empty:
            plot_stats_md = "No data matches the selected filters. Please try different options."
        else:
            total_items_in_plot = len(treemap_df['id'].unique())
            total_value_in_plot = treemap_df[metric_choice].sum()
            plot_stats_md = f"## Plot Statistics\n- **Models shown**: {total_items_in_plot:,}\n- **Total {metric_choice}**: {int(total_value_in_plot):,}"
        return plotly_fig, plot_stats_md

    ## CHANGE: Updated demo.load to call the new function and to add plot_output to the outputs list
    demo.load(
        fn=load_and_generate_initial_plot, 
        inputs=[], 
        outputs=[models_data_state, loading_complete_state, data_info_md, status_message_md, plot_output]
    )

    generate_plot_button.click(
        fn=ui_generate_plot_controller,
        inputs=[count_by_dropdown, filter_choice_radio, tag_filter_dropdown, pipeline_filter_dropdown,
                param_range_slider, top_k_dropdown, skip_orgs_textbox, include_unknown_params_checkbox, models_data_state], # Add checkbox to inputs
        outputs=[plot_output, status_message_md]
    )

if __name__ == "__main__":
    print(f"Application starting...")
    demo.queue().launch()