Spaces:
Running
Running
File size: 16,770 Bytes
bbf45d0 961c6fe b06975a c0b7e37 961c6fe 97da54a c0b7e37 afd7356 b06975a 7064a74 4517d15 961c6fe 59d14c6 afd7356 961c6fe afd7356 d858aa5 97da54a f38cb18 f0e2fd8 f38cb18 d858aa5 afd7356 c0b7e37 961c6fe 97da54a 961c6fe f38cb18 961c6fe 9c451ee f38cb18 4517d15 b06975a 97da54a 4517d15 f38cb18 97da54a 4517d15 f38cb18 b06975a 961c6fe b06975a 0c6bf95 f0e2fd8 961c6fe f0e2fd8 9c451ee f0e2fd8 961c6fe 9c451ee 4517d15 961c6fe bbf45d0 6504db8 ae21931 6504db8 535bf1f f9d96a7 535bf1f 6504db8 535bf1f 6504db8 0421d9a 535bf1f 0421d9a ae21931 961c6fe f0e2fd8 d858aa5 eec69ec 98b7de8 f0e2fd8 23d71de 9062ccf 23d71de 59d14c6 47e0cf9 bf675e1 6504db8 8327f21 23d71de 8327f21 72bf03d f38cb18 9062ccf 23d71de 59d14c6 afd7356 f0e2fd8 961c6fe f0e2fd8 c0b7e37 ae21931 c0b7e37 ae21931 c0b7e37 db85dcc ae21931 db85dcc 59d14c6 23d71de 59d14c6 961c6fe b72bb50 b06975a b72bb50 961c6fe afd7356 961c6fe b72bb50 fa2c2d2 b06975a fa2c2d2 f38cb18 4517d15 961c6fe b72bb50 c0b7e37 b72bb50 f38cb18 b72bb50 f38cb18 b72bb50 4d0811f 961c6fe f38cb18 961c6fe b72bb50 d858aa5 b06975a 961c6fe b06975a f0e2fd8 4517d15 f38cb18 9c451ee b06975a 961c6fe afd7356 961c6fe b06975a 961c6fe f0e2fd8 d858aa5 4517d15 961c6fe b72bb50 0c6bf95 b72bb50 0c6bf95 b72bb50 47e0cf9 afd7356 bbf45d0 961c6fe f38cb18 f0e2fd8 bbf45d0 d858aa5 b72bb50 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 |
import gradio as gr
import pandas as pd
import plotly.express as px
import time
from datasets import load_dataset
# Using the stable, community-built RangeSlider component
from gradio_rangeslider import RangeSlider
# --- Constants ---
PARAM_CHOICES = ['< 1B', '1B', '5B', '12B', '32B', '64B', '128B', '256B', '> 500B']
PARAM_CHOICES_DEFAULT_INDICES = (0, len(PARAM_CHOICES) - 1)
TOP_K_CHOICES = list(range(5, 51, 5))
HF_DATASET_ID = "evijit/modelverse_daily_data"
TAG_FILTER_CHOICES = [ "Audio & Speech", "Time series", "Robotics", "Music", "Video", "Images", "Text", "Biomedical", "Sciences" ]
PIPELINE_TAGS = [ 'text-generation', 'text-to-image', 'text-classification', 'text2text-generation', 'audio-to-audio', 'feature-extraction', 'image-classification', 'translation', 'reinforcement-learning', 'fill-mask', 'text-to-speech', 'automatic-speech-recognition', 'image-text-to-text', 'token-classification', 'sentence-similarity', 'question-answering', 'image-feature-extraction', 'summarization', 'zero-shot-image-classification', 'object-detection', 'image-segmentation', 'image-to-image', 'image-to-text', 'audio-classification', 'visual-question-answering', 'text-to-video', 'zero-shot-classification', 'depth-estimation', 'text-ranking', 'image-to-video', 'multiple-choice', 'unconditional-image-generation', 'video-classification', 'text-to-audio', 'time-series-forecasting', 'any-to-any', 'video-text-to-text', 'table-question-answering' ]
def load_models_data():
overall_start_time = time.time()
print(f"Attempting to load dataset from Hugging Face Hub: {HF_DATASET_ID}")
try:
dataset_dict = load_dataset(HF_DATASET_ID)
df = dataset_dict[list(dataset_dict.keys())[0]].to_pandas()
if 'params' in df.columns:
# IMPORTANT CHANGE: Fill NaN/coerce errors with -1 to signify unknown size
# This aligns with the utility function's return of -1.0 for unknown sizes.
df['params'] = pd.to_numeric(df['params'], errors='coerce').fillna(-1)
else:
# If 'params' column doesn't exist, assume all are unknown
df['params'] = -1
msg = f"Successfully loaded dataset in {time.time() - overall_start_time:.2f}s."
print(msg)
return df, True, msg
except Exception as e:
err_msg = f"Failed to load dataset. Error: {e}"
print(err_msg)
return pd.DataFrame(), False, err_msg
def get_param_range_values(param_range_labels):
min_label, max_label = param_range_labels
min_val = 0.0 if '<' in min_label else float(min_label.replace('B', ''))
max_val = float('inf') if '>' in max_label else float(max_label.replace('B', ''))
return min_val, max_val
def make_treemap_data(df, count_by, top_k=25, tag_filter=None, pipeline_filter=None, param_range=None, skip_orgs=None, include_unknown_param_size=True):
if df is None or df.empty: return pd.DataFrame()
filtered_df = df.copy()
# New: Filter based on unknown parameter size
# If include_unknown_param_size is False, exclude models where params is -1 (unknown)
if not include_unknown_param_size and 'params' in filtered_df.columns:
filtered_df = filtered_df[filtered_df['params'] != -1]
col_map = { "Audio & Speech": "is_audio_speech", "Music": "has_music", "Robotics": "has_robot", "Biomedical": "is_biomed", "Time series": "has_series", "Sciences": "has_science", "Video": "has_video", "Images": "has_image", "Text": "has_text" }
if tag_filter and tag_filter in col_map and col_map[tag_filter] in filtered_df.columns:
filtered_df = filtered_df[filtered_df[col_map[tag_filter]]]
if pipeline_filter and "pipeline_tag" in filtered_df.columns:
filtered_df = filtered_df[filtered_df["pipeline_tag"].astype(str) == pipeline_filter]
if param_range:
min_params, max_params = get_param_range_values(param_range)
is_default_range = (param_range[0] == PARAM_CHOICES[0] and param_range[1] == PARAM_CHOICES[-1])
# Apply parameter range filter only if it's not the default (all range) AND params column exists
# This filter will naturally exclude -1 if the min_params is >= 0, as it should.
if not is_default_range and 'params' in filtered_df.columns:
if min_params is not None: filtered_df = filtered_df[filtered_df['params'] >= min_params]
if max_params is not None and max_params != float('inf'): filtered_df = filtered_df[filtered_df['params'] < max_params]
if skip_orgs and len(skip_orgs) > 0 and "organization" in filtered_df.columns:
filtered_df = filtered_df[~filtered_df["organization"].isin(skip_orgs)]
if filtered_df.empty: return pd.DataFrame()
if count_by not in filtered_df.columns: filtered_df[count_by] = 0.0
filtered_df[count_by] = pd.to_numeric(filtered_df[count_by], errors='coerce').fillna(0.0)
org_totals = filtered_df.groupby("organization")[count_by].sum().nlargest(top_k, keep='first')
top_orgs_list = org_totals.index.tolist()
treemap_data = filtered_df[filtered_df["organization"].isin(top_orgs_list)][["id", "organization", count_by]].copy()
treemap_data["root"] = "models"
return treemap_data
def create_treemap(treemap_data, count_by, title=None):
if treemap_data.empty:
fig = px.treemap(names=["No data matches filters"], parents=[""], values=[1])
fig.update_layout(title="No data matches the selected filters", margin=dict(t=50, l=25, r=25, b=25))
return fig
fig = px.treemap(treemap_data, path=["root", "organization", "id"], values=count_by, title=title, color_discrete_sequence=px.colors.qualitative.Plotly)
fig.update_layout(margin=dict(t=50, l=25, r=25, b=25))
fig.update_traces(textinfo="label+value+percent root", hovertemplate="<b>%{label}</b><br>%{value:,} " + count_by + "<br>%{percentRoot:.2%} of total<extra></extra>")
return fig
# --- FINAL, CORRECTED CSS ---
custom_css = """
/* Hide the extra UI elements from the RangeSlider component */
#param-slider-wrapper .head,
#param-slider-wrapper div[data-testid="range-slider"] > span {
display: none !important;
}
/*
THIS IS THE KEY FIX:
We target all the individual component containers (divs with class .block)
that are *direct children* of our custom-classed group.
This removes the "box-in-a-box" effect by making the inner component
containers transparent. The parent gr.Group now acts as the single card,
which is exactly what we want.
*/
.model-parameters-group > .block {
background: none !important;
border: none !important;
box-shadow: none !important;
}
"""
with gr.Blocks(title="🤗 ModelVerse Explorer", fill_width=True, css=custom_css) as demo:
models_data_state = gr.State(pd.DataFrame())
loading_complete_state = gr.State(False)
with gr.Row():
gr.Markdown("# 🤗 ModelVerse Explorer")
with gr.Row():
with gr.Column(scale=1):
# This section remains un-grouped for a consistent flat look
count_by_dropdown = gr.Dropdown(label="Metric", choices=[("Downloads (last 30 days)", "downloads"), ("Downloads (All Time)", "downloadsAllTime"), ("Likes", "likes")], value="downloads")
filter_choice_radio = gr.Radio(label="Filter Type", choices=["None", "Tag Filter", "Pipeline Filter"], value="None")
tag_filter_dropdown = gr.Dropdown(label="Select Tag", choices=TAG_FILTER_CHOICES, value=None, visible=False)
pipeline_filter_dropdown = gr.Dropdown(label="Select Pipeline Tag", choices=PIPELINE_TAGS, value=None, visible=False)
# This group's styling will be modified by the custom CSS
with gr.Group(elem_classes="model-parameters-group"):
gr.Markdown("<div style='font-weight: 500;'>Model Parameters</div>")
param_range_slider = RangeSlider(
minimum=0,
maximum=len(PARAM_CHOICES) - 1,
value=PARAM_CHOICES_DEFAULT_INDICES,
step=1,
label=None,
show_label=False,
elem_id="param-slider-wrapper"
)
param_range_display = gr.Markdown(f"Range: `{PARAM_CHOICES[0]}` to `{PARAM_CHOICES[-1]}`")
# New: Checkbox for including unknown parameter sizes
include_unknown_params_checkbox = gr.Checkbox(label="Include models with unknown parameter size", value=True)
# This section remains un-grouped
top_k_dropdown = gr.Dropdown(label="Number of Top Organizations", choices=TOP_K_CHOICES, value=25)
skip_orgs_textbox = gr.Textbox(label="Organizations to Skip (comma-separated)", value="TheBloke,MaziyarPanahi,unsloth,modularai,Gensyn,bartowski")
generate_plot_button = gr.Button(value="Generate Plot", variant="primary", interactive=False)
with gr.Column(scale=3):
plot_output = gr.Plot()
status_message_md = gr.Markdown("Initializing...")
data_info_md = gr.Markdown("")
def update_param_display(value: tuple):
min_idx, max_idx = int(value[0]), int(value[1])
return f"Range: `{PARAM_CHOICES[min_idx]}` to `{PARAM_CHOICES[max_idx]}`"
# New function to toggle the unknown params checkbox interactivity
def _toggle_unknown_params_checkbox(param_range_indices):
min_idx, max_idx = int(param_range_indices[0]), int(param_range_indices[1])
is_default_range = (min_idx == PARAM_CHOICES_DEFAULT_INDICES[0] and
max_idx == PARAM_CHOICES_DEFAULT_INDICES[1])
# If a specific range is selected (not the default all-inclusive range), disable the checkbox
# and uncheck it to ensure consistency.
if not is_default_range:
return gr.update(interactive=False, value=False) # Disable and uncheck
else:
return gr.update(interactive=True) # Enable
param_range_slider.change(update_param_display, param_range_slider, param_range_display)
# Connect the new toggle function to the param_range_slider's change event
param_range_slider.change(
fn=_toggle_unknown_params_checkbox,
inputs=[param_range_slider],
outputs=[include_unknown_params_checkbox]
)
def _update_button_interactivity(is_loaded_flag): return gr.update(interactive=is_loaded_flag)
loading_complete_state.change(fn=_update_button_interactivity, inputs=loading_complete_state, outputs=generate_plot_button)
def _toggle_filters_visibility(choice):
return gr.update(visible=choice == "Tag Filter"), gr.update(visible=choice == "Pipeline Filter")
filter_choice_radio.change(fn=_toggle_filters_visibility, inputs=filter_choice_radio, outputs=[tag_filter_dropdown, pipeline_filter_dropdown])
## CHANGE: Renamed and modified ui_load_data_controller to also generate the initial plot
def load_and_generate_initial_plot(progress=gr.Progress()):
progress(0, desc=f"Loading dataset '{HF_DATASET_ID}'...")
# --- Part 1: Data Loading ---
try:
current_df, load_success_flag, status_msg_from_load = load_models_data()
if load_success_flag:
progress(0.5, desc="Processing data...")
date_display = "Pre-processed (date unavailable)"
if 'data_download_timestamp' in current_df.columns and pd.notna(current_df['data_download_timestamp'].iloc[0]):
ts = pd.to_datetime(current_df['data_download_timestamp'].iloc[0], utc=True)
date_display = ts.strftime('%B %d, %Y, %H:%M:%S %Z')
# Count models where params is not -1 (known size)
param_count = (current_df['params'] != -1).sum() if 'params' in current_df.columns else 0
unknown_param_count = (current_df['params'] == -1).sum() if 'params' in current_df.columns else 0
data_info_text = f"### Data Information\n- Source: `{HF_DATASET_ID}`\n- Status: {status_msg_from_load}\n- Total models loaded: {len(current_df):,}\n- Models with known parameter counts: {param_count:,}\n- Models with unknown parameter counts: {unknown_param_count:,}\n- Data as of: {date_display}\n"
else:
data_info_text = f"### Data Load Failed\n- {status_msg_from_load}"
except Exception as e:
status_msg_from_load = f"An unexpected error occurred: {str(e)}"
data_info_text = f"### Critical Error\n- {status_msg_from_load}"
load_success_flag = False
current_df = pd.DataFrame()
print(f"Critical error in load_and_generate_initial_plot: {e}")
# --- Part 2: Generate Initial Plot ---
progress(0.6, desc="Generating initial plot...")
# Get default values directly from the UI component definitions
default_metric = "downloads"
default_filter_type = "None"
default_tag = None
default_pipeline = None
default_param_indices = PARAM_CHOICES_DEFAULT_INDICES
default_k = 25
default_skip_orgs = "TheBloke,MaziyarPanahi,unsloth,modularai,Gensyn,bartowski"
# New default: include unknown params initially (matches checkbox default)
default_include_unknown_params = True
# Reuse the existing controller function for plotting
initial_plot, initial_status = ui_generate_plot_controller(
default_metric, default_filter_type, default_tag, default_pipeline,
default_param_indices, default_k, default_skip_orgs, default_include_unknown_params, current_df, progress
)
# Return all the necessary updates for the UI
return current_df, load_success_flag, data_info_text, initial_status, initial_plot
def ui_generate_plot_controller(metric_choice, filter_type, tag_choice, pipeline_choice,
param_range_indices, k_orgs, skip_orgs_input, include_unknown_param_size_flag, df_current_models, progress=gr.Progress()):
if df_current_models is None or df_current_models.empty:
return create_treemap(pd.DataFrame(), metric_choice, "Error: Model Data Not Loaded"), "Model data is not loaded. Cannot generate plot."
progress(0.1, desc="Preparing data...")
tag_to_use = tag_choice if filter_type == "Tag Filter" else None
pipeline_to_use = pipeline_choice if filter_type == "Pipeline Filter" else None
orgs_to_skip = [org.strip() for org in skip_orgs_input.split(',') if org.strip()]
min_label = PARAM_CHOICES[int(param_range_indices[0])]
max_label = PARAM_CHOICES[int(param_range_indices[1])]
param_labels_for_filtering = [min_label, max_label]
treemap_df = make_treemap_data(
df_current_models,
metric_choice,
k_orgs,
tag_to_use,
pipeline_to_use,
param_labels_for_filtering,
orgs_to_skip,
include_unknown_param_size_flag # Pass the new flag
)
progress(0.7, desc="Generating plot...")
title_labels = {"downloads": "Downloads (last 30 days)", "downloadsAllTime": "Downloads (All Time)", "likes": "Likes"}
chart_title = f"HuggingFace Models - {title_labels.get(metric_choice, metric_choice)} by Organization"
plotly_fig = create_treemap(treemap_df, metric_choice, chart_title)
if treemap_df.empty:
plot_stats_md = "No data matches the selected filters. Please try different options."
else:
total_items_in_plot = len(treemap_df['id'].unique())
total_value_in_plot = treemap_df[metric_choice].sum()
plot_stats_md = f"## Plot Statistics\n- **Models shown**: {total_items_in_plot:,}\n- **Total {metric_choice}**: {int(total_value_in_plot):,}"
return plotly_fig, plot_stats_md
## CHANGE: Updated demo.load to call the new function and to add plot_output to the outputs list
demo.load(
fn=load_and_generate_initial_plot,
inputs=[],
outputs=[models_data_state, loading_complete_state, data_info_md, status_message_md, plot_output]
)
generate_plot_button.click(
fn=ui_generate_plot_controller,
inputs=[count_by_dropdown, filter_choice_radio, tag_filter_dropdown, pipeline_filter_dropdown,
param_range_slider, top_k_dropdown, skip_orgs_textbox, include_unknown_params_checkbox, models_data_state], # Add checkbox to inputs
outputs=[plot_output, status_message_md]
)
if __name__ == "__main__":
print(f"Application starting...")
demo.queue().launch() |